Remove matroid thingy
This commit is contained in:
parent
966f244e47
commit
325d12ba7e
73
main.tex
73
main.tex
|
@ -75,16 +75,7 @@ code-for-last-col = \color{blue}
|
|||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
% should we make is so that these bullet points appear one after another? Yes
|
||||
\begin{frame}{Abstracting Independence - Motivation}
|
||||
\begin{itemize}
|
||||
\item 1
|
||||
\item 2
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\include{prerequisites}
|
||||
|
||||
\include{isospectral}
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
|
@ -92,9 +83,9 @@ code-for-last-col = \color{blue}
|
|||
\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
|
||||
|
||||
\item Helmholtz equation on $\textcolor{blue}{M}$ given by
|
||||
\begin{align*}
|
||||
(\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0
|
||||
\end{align*}
|
||||
\begin{align*}
|
||||
(\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0
|
||||
\end{align*}
|
||||
|
||||
\item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number
|
||||
|
||||
|
@ -138,15 +129,15 @@ code-for-last-col = \color{blue}
|
|||
\begin{frame}{CMB radiation in an inhomogeneous spherical space}
|
||||
|
||||
\begin{itemize}
|
||||
\item Manifolds of the form $\mathbb S/\Gamma$ with $\Gamma$ a group acting on $\mathbb S^3$.
|
||||
\item Manifolds of the form $\mathbb S/\Gamma$ with $\Gamma$ a group acting on $\mathbb S^3$.
|
||||
\item Multi-connected space: it has non-contractable loops
|
||||
\item Inhomogeneous space: it does not look identical from every point in space
|
||||
\item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence:
|
||||
\begin{enumerate}
|
||||
\item homogeneous: $N3$ and $L(8,1)$
|
||||
\item inhomogeneous: $N2 \equiv L(8,3)$
|
||||
\end{enumerate}
|
||||
\item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because observer dependency changes the suppression of CMB anisotropies.
|
||||
\begin{enumerate}
|
||||
\item homogeneous: $N3$ and $L(8,1)$
|
||||
\item inhomogeneous: $N2 \equiv L(8,3)$
|
||||
\end{enumerate}
|
||||
\item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because observer dependency changes the suppression of CMB anisotropies.
|
||||
\end{itemize}
|
||||
|
||||
|
||||
|
@ -155,34 +146,34 @@ code-for-last-col = \color{blue}
|
|||
\section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}
|
||||
|
||||
\begin{frame}{The setup}
|
||||
From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. \\
|
||||
So, $\Delta T(\hat{n})$ expanded using \textit{spherical harmonics}, with $a_{\ell m}$ its coefficients.\\
|
||||
We assume the fluctuations:
|
||||
\begin{itemize}
|
||||
\item Statistically isotropic and homogeneous in the mean.
|
||||
\item Gaussian distribution.
|
||||
\item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables.
|
||||
\end{itemize}
|
||||
Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$ \\
|
||||
From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. \\
|
||||
So, $\Delta T(\hat{n})$ expanded using \textit{spherical harmonics}, with $a_{\ell m}$ its coefficients.\\
|
||||
We assume the fluctuations:
|
||||
\begin{itemize}
|
||||
\item Statistically isotropic and homogeneous in the mean.
|
||||
\item Gaussian distribution.
|
||||
\item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables.
|
||||
\end{itemize}
|
||||
Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$ \\
|
||||
|
||||
\textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
|
||||
\textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{The setup}
|
||||
Real CMB observations are affected by instrumental noise and \textit{sky masking}. So, estimating $C_\ell$ accurately requires simulations.
|
||||
Real CMB observations are affected by instrumental noise and \textit{sky masking}. So, estimating $C_\ell$ accurately requires simulations.
|
||||
|
||||
Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky
|
||||
\[
|
||||
\textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}).
|
||||
\]
|
||||
However, this introduces bias, which must be corrected using a decorrelation matrix $W$, and a \textit{sky mask} matrix $M$ which accounts for issues caused by masking effects.
|
||||
Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky
|
||||
\[
|
||||
\textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}).
|
||||
\]
|
||||
However, this introduces bias, which must be corrected using a decorrelation matrix $W$, and a \textit{sky mask} matrix $M$ which accounts for issues caused by masking effects.
|
||||
|
||||
Giving us the test statistic (tests the assumption of statistical isotropy):
|
||||
\[
|
||||
S_i = \sum_{j} W_{ij} M_j,
|
||||
\]
|
||||
Which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges. \\
|
||||
\textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
|
||||
Giving us the test statistic (tests the assumption of statistical isotropy):
|
||||
\[
|
||||
S_i = \sum_{j} W_{ij} M_j,
|
||||
\]
|
||||
Which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges. \\
|
||||
\textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -192,7 +183,7 @@ Which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole r
|
|||
\includegraphics[width=0.7\linewidth]{DSE-Test Graph}
|
||||
\caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].}
|
||||
\end{figure}
|
||||
\textcolor{red}{Remark}In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum.
|
||||
\textcolor{red}{Remark}In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum.
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
|
Loading…
Reference in a new issue