From a0d9612e04006bdfa7e5048dcc7cff360d5c7272 Mon Sep 17 00:00:00 2001 From: "juso.koc" <juso.koc@gmail.com> Date: Fri, 21 Mar 2025 12:21:43 +0000 Subject: [PATCH] Update on Overleaf. --- main.tex | 46 +++++++++++++++++++++++----------------------- 1 file changed, 23 insertions(+), 23 deletions(-) diff --git a/main.tex b/main.tex index d0a2196..b5a8f5f 100644 --- a/main.tex +++ b/main.tex @@ -96,7 +96,7 @@ code-for-last-col = \color{blue} \pause \item The set of all possible wave numbers [for which a nonzero solution exists] depends on $\Gamma$ - usually a proper subset of $\mathbb{{N}}$. \pause - \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\frac{\delta T}{T}$ computed as a sum of spherical harmonics. + \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\textcolor{purple}{\frac{\delta T}{T}}$ computed as a sum of spherical harmonics. \end{itemize} \end{frame} @@ -137,16 +137,16 @@ code-for-last-col = \color{blue} \begin{itemize} \item Manifolds of the form $\S^3/\Gamma$ with $\Gamma$ a group acting on $\S^3$. - \item Multi-connected space: it has non-contractable loops. - \item Inhomogeneous space: it does not look identical from every point in space. + \item \textcolor{red}{Multi-connected} space: it has non-contractable loops. + \item \textcolor{red}{Inhomogeneous} space: it does not look identical from every point in space. \pause - \item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence: \pause + \item Fixing $|\Gamma|=8$, we have \textcolor{red}{three} multi-connected manifolds, up to equivalence: \pause \begin{enumerate} \item homogeneous: $N3$ and $L(8,1)$. \item inhomogeneous: $N2 \equiv L(8,3)$. \end{enumerate} \pause - \item Results: inhomogeneous spaces have more variety in the CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is observer dependent. + \item Results: inhomogeneous spaces have \textcolor{red}{more variety} in the CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is \textcolor{red}{observer dependent}. \end{itemize} @@ -162,18 +162,18 @@ code-for-last-col = \color{blue} \pause \item The CMB temperature fluctuations can be expanded as: \[ - \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n}) + \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \textcolor{blue}{a_{\ell m}} Y_{\ell m}(\hat{n}) \] \pause \item If the universe is isotropic, the \textbf{mean of the harmonic coefficients} should satisfy: \[ - \langle a_{\ell m} \rangle = 0 + \langle \textcolor{blue}{a_{\ell m}} \rangle = 0 \] \end{itemize} \pause \textbf{Key Question:} - Does the observed CMB data deviate from statistical isotropy? - - If \( \langle a_{\ell m} \rangle \neq 0 \), this suggests a preferred cosmic direction. + - If \( \langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0 \), this suggests a preferred cosmic direction. \end{frame} \begin{frame}{Methodology: Sky Masking and the Test Statistic} @@ -195,7 +195,7 @@ code-for-last-col = \color{blue} \item We generate thousands of \textbf{simulated CMB skies} assuming isotropy. \item Each sky has different random \( a_{\ell m} \), drawn from: \[ - a_{\ell m} \sim \mathcal{N} (0, C_\ell) + \textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell) \] \item The observed WMAP data is compared against these simulations. \end{itemize} @@ -250,11 +250,11 @@ code-for-last-col = \color{blue} \section{References} \begin{frame}{References} \begin{itemize} - \item R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011. - \item R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012. - \item R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005. - \item P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004. - \item G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html. + \item [1] R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011. + \item [2] R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012. + \item [3] R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005. + \item [4] P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004. + \item [5]G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html. \end{itemize} \end{frame} @@ -262,20 +262,20 @@ code-for-last-col = \color{blue} \begin{frame}{References} \begin{itemize} - \item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011. - \item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996. - \item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980. - \item D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012. - \item P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013. + \item [6] N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011. + \item [7] M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996. + \item [8] A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980. + \item [9] D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012. + \item [10] P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013. \end{itemize} \end{frame} \begin{frame}{References} \begin{itemize} - \item E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025. - \item R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002. - \item M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025. - \item B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020. + \item [11] E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025. + \item [12] R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002. + \item [13] M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025. + \item [14] B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020. \end{itemize} \end{frame}