From 512c6eaf2d6d38af7222aee9577458a9f2f6a880 Mon Sep 17 00:00:00 2001
From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl>
Date: Thu, 20 Mar 2025 13:51:44 +0000
Subject: [PATCH] Update on Overleaf.

---
 main.tex | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/main.tex b/main.tex
index 8c7dbea..33a40b9 100644
--- a/main.tex
+++ b/main.tex
@@ -87,7 +87,7 @@ code-for-last-col = \color{blue}
 		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
 
 		\item Helmholtz equation on $\textcolor{blue}{M}$ given by
-		      $$(\Delta + E_\textcolor{red} {\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
+		      $$(\Delta + E_{\textcolor{red}}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
 
 		\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number