From 5898484792c143df769526e5d41662d7f2955f8a Mon Sep 17 00:00:00 2001 From: "juso.koc" <juso.koc@gmail.com> Date: Fri, 21 Mar 2025 10:46:55 +0000 Subject: [PATCH] Update on Overleaf. --- main.tex | 131 ++++++++++++++++++++++++++++------------------ prerequisites.tex | 6 +-- 2 files changed, 82 insertions(+), 55 deletions(-) diff --git a/main.tex b/main.tex index 63009bb..8f96cfb 100644 --- a/main.tex +++ b/main.tex @@ -1,5 +1,6 @@ \documentclass{beamer} \usetheme{Warsaw} +\usepackage{amsmath, amssymb} \usecolortheme{lily} % boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works @@ -78,18 +79,22 @@ code-for-last-col = \color{blue} \include{prerequisites} \include{isospectral} -\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} +\section{CMB Anisotropy of Spherical Spaces +} + +\begin{frame}[fragile]{Homogeneous Spherical Spaces} \begin{itemize} - \item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum as its solutions, and is given by + \item Finite subgroup $\Gamma \leq \so 4.$ + \item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum of the underlying manifold as its solutions, and is given by \begin{align*} (\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0. \end{align*} - \item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number. + \item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$. We call $\textcolor{red}{\beta}$ a wave number. - \item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $\Gamma$. + \item The set of all possible wave numbers [for which a nonzero solution exists] depends on $\Gamma$ - usually a proper subset of $\mathbb{{N}}$. - \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\frac{\delta T}{T}$ computed. + \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\frac{\delta T}{T}$ computed as a sum of spherical harmonics. \end{itemize} \end{frame} @@ -107,7 +112,7 @@ code-for-last-col = \color{blue} \end{comment} -\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces — Conclusion} +\begin{frame}[fragile]{Homogenous Spherical Spaces --- Results} \begin{itemize} \item For the majority of groups $\Gamma$, the anisotropies $\frac{\delta T}{T}$ do not coincide with observations. \item The only groups for which it does are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively. @@ -122,7 +127,7 @@ code-for-last-col = \color{blue} \end{frame} -\section{CMB radiation in an inhomogeneous spherical space} +\section{CMB Radiation in an Inhomogeneous Spherical Space} \begin{frame}{Inhomogeneous spherical space} @@ -135,7 +140,7 @@ code-for-last-col = \color{blue} \item homogeneous: $N3$ and $L(8,1)$ \item inhomogeneous: $N2 \equiv L(8,3)$ \end{enumerate} - \item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is observer dependent. + \item Results: inhomogeneous spaces have more variety in the CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is observer dependent. \end{itemize} @@ -143,64 +148,85 @@ code-for-last-col = \color{blue} \section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space} -\begin{frame}{The setup} - From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. We expand $\Delta T(\hat{n})$ using \emph{spherical harmonics}, yielding coefficients $a_{\ell m}$. +\begin{frame}{Statistical Isotropy and Hypothesis} +\small + \textbf{Theoretical Expectation:}\\ + From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2$.\\ + \begin{itemize} + \item The CMB temperature fluctuations can be expanded as: + \[ + \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n}) + \] + \item If the universe is isotropic, the \textbf{mean of the harmonic coefficients} should satisfy: + \[ + \langle a_{\ell m} \rangle = 0 + \] + \end{itemize} - We assume the fluctuations: - \begin{itemize} - \item Statistically isotropic and homogeneous in the mean. - \item Gaussian distribution. - \item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables. - \end{itemize} - - Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$. - - \textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe} + \textbf{Key Question:} + - Does the observed CMB data deviate from statistical isotropy? + - If \( \langle a_{\ell m} \rangle \neq 0 \), this suggests a preferred cosmic direction. \end{frame} -\begin{frame}{The setup} - Real CMB observations are affected by instrumental noise and \emph{sky masking}. As a result, estimating $C_\ell$ accurately requires simulations. - - Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky - \[ - \textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}). - \] - - Unfortunately, this introduces bias, which must be corrected using a decorrelation matrix $W$, and a \textit{sky mask} matrix $M$ which accounts for issues caused by masking effects. This gives us the test statistic (tests the assumption of statistical isotropy): - \[ - S_i = \sum_{j} W_{ij} M_j, - \] - which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges. - - \textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe} - +\begin{frame}{Methodology: Sky Masking and the Test Statistic} +\small + \textbf{Challenges in Real Observations:} + \begin{itemize} + \item We cannot observe the full CMB sky due to foreground contamination. + \item A \textbf{sky mask function} \( A(\hat{n}) \) removes contaminated regions, but introduces bias. + \item The test statistic \( S_i \) is used, with a matrix $W$ to correct for these effects: + \[ + S_i = \sum_{j} W_{ij} M_j + \] + \end{itemize} + + \textbf{Monte Carlo Simulations:} + \begin{itemize} + \item We generate thousands of \textbf{simulated CMB skies} assuming isotropy. + \item Each sky has different random \( a_{\ell m} \), drawn from: + \[ + a_{\ell m} \sim \mathcal{N} (0, C_\ell) + \] + \item The observed WMAP data is compared against these simulations. + \end{itemize} \end{frame} -\begin{frame}{The Results} - \begin{figure} [h!] + +\begin{frame}{Results and Interpretation} +\small + \begin{columns} + \column{0.5\textwidth} + \begin{figure} \centering - \includegraphics[width=0.7\linewidth]{DSE-Test Graph} - \caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].} + \includegraphics[width=6.2cm]{DSE-Test Graph} + \caption{The decorrelated band mean test statistic values over multipole ranges [9].} \end{figure} + \column{0.5\textwidth} + \textbf{Key Findings:} + \begin{itemize} + \item A statistically significant deviation was found in \( 221 \leq \ell \leq 240 \). + \item This suggests a potential \textcolor{red}{preferred cosmic direction}. + \end{itemize} - \textcolor{red}{Remark}: In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum. - + \textbf{Possible Explanations:} + \begin{itemize} + \item A real cosmological signal? → A finite universe or new physics. + \item A systematic effect? → Foreground contamination or instrumental noise. + \end{itemize} + \end{columns} \end{frame} + \section{Conclusion} \begin{frame}{Conclusion} - akbbfbsKJBKJBLJs + \begin{enumerate} + \item We can infer the shape of the universe from its spectrum + \item There are two homogeneous spherical manifolds obtained as $\S^3/\Gamma$ which produce CMB similar to observations + \item Inhomogeneous spherical spaces exhibit varied behavior of CMB anisotropies + \item Statistical test results suggest possibilities of finite multi-connected topology + \end{enumerate} \end{frame} -\begin{frame}{To summerize} - egqgaaf - \begin{itemize} - \item 1 - \item 2 - \item 3 - \end{itemize} - -\end{frame} \section{References} \begin{frame}{References} @@ -245,4 +271,5 @@ code-for-last-col = \color{blue} \end{center} \end{frame} + \end{document} diff --git a/prerequisites.tex b/prerequisites.tex index 920cbd1..55e4b5e 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -18,7 +18,7 @@ \begin{frame}{Quotients of the $3$-sphere} \begin{itemize} - \item $\so 4$ is isomorphic to the isometry group of $\S^3$ + \item $\so 4$ is isomorphic to the isometry group of $\S^3$. \item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^3$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$. \item This can be easily generalised to the $n$-sphere. @@ -33,11 +33,11 @@ \end{frame} \begin{frame}{Lens spaces — the explicit construction} \begin{definition}[Lens space] - Given $q \in \mathbb N$ and $s \in \mathbb Z ^n$ each coprime with $q$ + Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$ \begin{align*} \lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle, \end{align*} - where $\langle M \rangle$ is the group generated by + where $\langle M_{q,s} \rangle$ is the group generated by \begin{align*} M_{q,s} \coloneq \begin{pmatrix}