diff --git a/main.pdf b/main.pdf index cd55816..8717840 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/main.tex b/main.tex index d98b4df..ed55636 100644 --- a/main.tex +++ b/main.tex @@ -24,12 +24,13 @@ \DeclareMathOperator{\lensop}{L} \DeclareMathOperator{\rotmatop}{R} \DeclareMathOperator{\soop}{SO} -\newcommand*{\lens}[2]{\textcolor{darkyellow}{\lensop\left(\textcolor{black}{#1},\textcolor{black}{#2}\right)}} % +\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} % \newcommand*{\so}[1]{\soop\left(#1\right)} \newcommand*{\rotmat}[1]{\textcolor{red}{\rotmatop\left(\textcolor{black}{#1}\right)}} \renewcommand{\S}{\mathbb{S}} \newcommand{\R}{\mathbb{R}} \newcommand{\sparkles}{\includegraphics[height=0.9em]{sparkles.png}} +\newcommand{\ghostzero}{\textcolor{lightgray}{0}} % cool color diff --git a/prerequisites.tex b/prerequisites.tex index b53307a..b405f0c 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -27,30 +27,35 @@ \end{itemize} \end{frame} -\begin{frame}{Lens Spaces} +\begin{frame}{Lens Spaces — the Explicit Construction} \begin{itemize} \item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group. \item They cannot be distinguished by their homotopy group alone. \end{itemize} -\end{frame} -\begin{frame}{Lens Spaces — the Explicit Construction} + \pause \begin{definition}[Lens space] - Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$ + Given coprime $p, z \in \mathbb Z$, we define \begin{align*} - \lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle, + \lens p q \coloneq \S^3/\langle M \rangle, \end{align*} - where $\langle M_{q,s} \rangle$ is the group generated by + where $\langle M \rangle$ is the group generated by \begin{align*} - M_{q,s} \coloneq - \begin{pmatrix} - \rotmat{2 \pi s_1 / q} & & & \\ - & \rotmat{2 \pi s_2 / q} & & \\ - & & \ddots & \\ - & & & \rotmat{2 \pi s_n / q} - \end{pmatrix}. + M \coloneq + \begin{bmatrix*}[r] + \cos{(2 \pi / p)} & \sin{(-2 \pi / p)} & \ghostzero & \ghostzero \\ + \sin{(2 \pi / p)} & \cos{(2 \pi / p)} & \ghostzero & \ghostzero \\ + \ghostzero & \ghostzero & \cos{(2 \pi q / p)} & \sin{(-2 \pi q / p)} \\ + \ghostzero & \ghostzero & \sin{(2 \pi q / p)} & \cos{(2 \pi q / p)} + \end{bmatrix*}. + % \begin{pmatrix} + % \rotmat{2 \pi s_1 / q} & & & \\ + % & \rotmat{2 \pi s_2 / q} & & \\ + % & & \ddots & \\ + % & & & \rotmat{2 \pi s_n / q} + % \end{pmatrix}. \end{align*} \end{definition} - \pause - In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$. + % \pause + % In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$. \end{frame}