diff --git a/main.pdf b/main.pdf index 8717840..39ced01 100644 Binary files a/main.pdf and b/main.pdf differ diff --git a/prerequisites.tex b/prerequisites.tex index 0df25fc..a67be66 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -22,7 +22,7 @@ \item $\so 4$ is isomorphic to the isometry group of $\S^3$. \item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \pause - \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$. + \item The obtain space is (\emph{sometimes}) a manifold. In particular, the finite $\Gamma$ we will consider guarantee the manifold to be well defined and spherical. \item This can be easily generalized to the $n$-sphere. \end{itemize} \end{frame}