From 7d3b7dff1601ff87a2fd06a786ed92a3ceb42ada Mon Sep 17 00:00:00 2001 From: "juso.koc" <juso.koc@gmail.com> Date: Thu, 20 Mar 2025 13:31:42 +0000 Subject: [PATCH] Update on Overleaf. --- main.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/main.tex b/main.tex index ec90553..64ba803 100644 --- a/main.tex +++ b/main.tex @@ -100,8 +100,8 @@ code-for-last-col = \color{blue} \begin{itemize} \item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite - \item Helmholtz equation on $M$ given by - $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{M, i} = 0$$ + \item Helmholtz equation on $\textcolor{blue}{M}$ given by + $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$ \item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number