From 7d3b7dff1601ff87a2fd06a786ed92a3ceb42ada Mon Sep 17 00:00:00 2001
From: "juso.koc" <juso.koc@gmail.com>
Date: Thu, 20 Mar 2025 13:31:42 +0000
Subject: [PATCH] Update on Overleaf.

---
 main.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/main.tex b/main.tex
index ec90553..64ba803 100644
--- a/main.tex
+++ b/main.tex
@@ -100,8 +100,8 @@ code-for-last-col = \color{blue}
 	\begin{itemize}
 		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
 
-		\item Helmholtz equation on $M$ given by
-		      $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{M, i} = 0$$
+		\item Helmholtz equation on $\textcolor{blue}{M}$ given by
+		      $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
 
 		\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number