diff --git a/prerequisites.tex b/prerequisites.tex
index a67be66..b2276b1 100644
--- a/prerequisites.tex
+++ b/prerequisites.tex
@@ -19,7 +19,7 @@
 
 \begin{frame}{Quotients of the $3$-sphere}
 	\begin{itemize}
-		\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
+		\item The group $\so 4$ is isomorphic to the isometry group of $\S^3$.
 		\item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
 		      \pause
 		\item The obtain space is (\emph{sometimes}) a manifold. In particular, the finite $\Gamma$ we will consider guarantee the manifold to be well defined and spherical.