From b009a922b23f1e9ee8e4386f3ff7650fcc9aa5b1 Mon Sep 17 00:00:00 2001 From: "juso.koc" <juso.koc@gmail.com> Date: Fri, 21 Mar 2025 14:09:48 +0000 Subject: [PATCH] Update on Overleaf. --- prerequisites.tex | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/prerequisites.tex b/prerequisites.tex index 0df25fc..eaef080 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -19,7 +19,7 @@ \begin{frame}{Quotients of the $3$-sphere} \begin{itemize} - \item $\so 4$ is isomorphic to the isometry group of $\S^3$. + \item The group $\so 4$ is isomorphic to the isometry group of $\S^3$. \item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \pause \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.