From b009a922b23f1e9ee8e4386f3ff7650fcc9aa5b1 Mon Sep 17 00:00:00 2001
From: "juso.koc" <juso.koc@gmail.com>
Date: Fri, 21 Mar 2025 14:09:48 +0000
Subject: [PATCH] Update on Overleaf.

---
 prerequisites.tex | 2 +-
 1 file changed, 1 insertion(+), 1 deletion(-)

diff --git a/prerequisites.tex b/prerequisites.tex
index 0df25fc..eaef080 100644
--- a/prerequisites.tex
+++ b/prerequisites.tex
@@ -19,7 +19,7 @@
 
 \begin{frame}{Quotients of the $3$-sphere}
 	\begin{itemize}
-		\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
+		\item The group $\so 4$ is isomorphic to the isometry group of $\S^3$.
 		\item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
 		      \pause
 		\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.