From 0a99b4e333a5f535cb18d0d47e7c1cb01a5b5ae3 Mon Sep 17 00:00:00 2001
From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl>
Date: Fri, 21 Mar 2025 11:30:14 +0000
Subject: [PATCH] Update on Overleaf.

---
 main.tex          | 2 +-
 prerequisites.tex | 2 +-
 2 files changed, 2 insertions(+), 2 deletions(-)

diff --git a/main.tex b/main.tex
index 8f96cfb..9c549e4 100644
--- a/main.tex
+++ b/main.tex
@@ -120,7 +120,7 @@ code-for-last-col = \color{blue}
 	\end{itemize}
 	\begin{figure}[H]
 		\centering
-		\includegraphics[width=0.35\linewidth]{binary-octahedron.png}
+		\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
 		\caption{Graphical representation of the binary tetrahedral group
 				[5]}
 	\end{figure}
diff --git a/prerequisites.tex b/prerequisites.tex
index 55e4b5e..d45f79f 100644
--- a/prerequisites.tex
+++ b/prerequisites.tex
@@ -49,5 +49,5 @@
 		\end{align*}
 	\end{definition}
 
-	In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb \mathbb Z$.
+	In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
 \end{frame}