From 0a99b4e333a5f535cb18d0d47e7c1cb01a5b5ae3 Mon Sep 17 00:00:00 2001 From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl> Date: Fri, 21 Mar 2025 11:30:14 +0000 Subject: [PATCH] Update on Overleaf. --- main.tex | 2 +- prerequisites.tex | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/main.tex b/main.tex index 8f96cfb..9c549e4 100644 --- a/main.tex +++ b/main.tex @@ -120,7 +120,7 @@ code-for-last-col = \color{blue} \end{itemize} \begin{figure}[H] \centering - \includegraphics[width=0.35\linewidth]{binary-octahedron.png} + \includegraphics[width=0.4\linewidth]{binary-octahedron.png} \caption{Graphical representation of the binary tetrahedral group [5]} \end{figure} diff --git a/prerequisites.tex b/prerequisites.tex index 55e4b5e..d45f79f 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -49,5 +49,5 @@ \end{align*} \end{definition} - In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb \mathbb Z$. + In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$. \end{frame}