Add section about isospectral pairs
This commit is contained in:
parent
cb840e450b
commit
a5adde3530
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -4,6 +4,10 @@
|
|||
*.fdb_latexmk
|
||||
*.fls
|
||||
*.log
|
||||
*.nav
|
||||
*.snm
|
||||
*.toc
|
||||
*.vrb
|
||||
*.out
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
|
|
37
isospectral.tex
Normal file
37
isospectral.tex
Normal file
|
@ -0,0 +1,37 @@
|
|||
\section{ The spectral geometry of hyperbolic and spherical spaces}
|
||||
\begin{frame}{The Laplace-Beltrami operator}
|
||||
\begin{enumerate}
|
||||
\begin{definition}[Laplace-Beltrami operator]
|
||||
a generalization of the Laplace operator to more general spaces
|
||||
\begin{align*}
|
||||
\Delta f \coloneq \divergence \nabla f
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
\item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold.
|
||||
\item The spectrum determines many things about the space (like its volume).
|
||||
\item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}.
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Can isospectral pairs approximate your mom}
|
||||
\begin{itemize}
|
||||
\item One of the problems the paper studies is finding volume-maximizing isospectral pairs of spherical forms (i.e. the spaces we are interested in).
|
||||
\item Isospectral pairs share the order of their homotopy groups.
|
||||
\item The paper classifies spherical forms with homotopy group of order $<24$.
|
||||
\item It follows that any such isospectral pairs (with group order $<24$) are lens spaces.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Combining lenses into larger spaces}
|
||||
\begin{itemize}
|
||||
\item We can combine lens spaces by concatenating their lists of indices.
|
||||
\item Together with a computational search, the paper builds a table of the solutions for a bunch of dimensions. The general case is still an open question.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{The silver lining}
|
||||
\begin{itemize}
|
||||
\item Isospectral pairs are cool and all, but they cannot occur in dimension $3$.
|
||||
\item We can thus attempt to infer the shape of our universe based on its spectrum.
|
||||
\end{itemize}
|
||||
\end{frame}
|
10
main.tex
10
main.tex
|
@ -12,11 +12,17 @@
|
|||
\usepackage{tikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{mathtools}
|
||||
\pgfplotsset{compat = newest}
|
||||
\usetikzlibrary{matrix}
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
\usetikzlibrary{perspective}
|
||||
|
||||
\DeclareMathOperator{\divergence}{div}
|
||||
\DeclareMathOperator{\lensop}{L}
|
||||
\DeclareMathOperator{\rotmat}{R}
|
||||
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
|
||||
|
||||
% cool color
|
||||
|
||||
\usepackage{xcolor}
|
||||
|
@ -43,6 +49,8 @@ code-for-last-col = \color{blue}
|
|||
|
||||
\maketitle
|
||||
|
||||
\section{Introduction & preliminaries}
|
||||
|
||||
\begin{frame}{Outline}
|
||||
%Should we make an outline?
|
||||
\begin{enumerate}%[<+->]
|
||||
|
@ -71,6 +79,8 @@ code-for-last-col = \color{blue}
|
|||
ddgagagagaga
|
||||
\end{frame}
|
||||
|
||||
\include{isospectral}
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
\begin{itemize}
|
||||
\item Manifolds $M := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
|
||||
|
|
Loading…
Reference in a new issue