Add section about isospectral pairs
This commit is contained in:
parent
cb840e450b
commit
a5adde3530
4
.gitignore
vendored
4
.gitignore
vendored
|
@ -4,6 +4,10 @@
|
|||
*.fdb_latexmk
|
||||
*.fls
|
||||
*.log
|
||||
*.nav
|
||||
*.snm
|
||||
*.toc
|
||||
*.vrb
|
||||
*.out
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
|
|
37
isospectral.tex
Normal file
37
isospectral.tex
Normal file
|
@ -0,0 +1,37 @@
|
|||
\section{ The spectral geometry of hyperbolic and spherical spaces}
|
||||
\begin{frame}{The Laplace-Beltrami operator}
|
||||
\begin{enumerate}
|
||||
\begin{definition}[Laplace-Beltrami operator]
|
||||
a generalization of the Laplace operator to more general spaces
|
||||
\begin{align*}
|
||||
\Delta f \coloneq \divergence \nabla f
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
\item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold.
|
||||
\item The spectrum determines many things about the space (like its volume).
|
||||
\item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}.
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Can isospectral pairs approximate your mom}
|
||||
\begin{itemize}
|
||||
\item One of the problems the paper studies is finding volume-maximizing isospectral pairs of spherical forms (i.e. the spaces we are interested in).
|
||||
\item Isospectral pairs share the order of their homotopy groups.
|
||||
\item The paper classifies spherical forms with homotopy group of order $<24$.
|
||||
\item It follows that any such isospectral pairs (with group order $<24$) are lens spaces.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Combining lenses into larger spaces}
|
||||
\begin{itemize}
|
||||
\item We can combine lens spaces by concatenating their lists of indices.
|
||||
\item Together with a computational search, the paper builds a table of the solutions for a bunch of dimensions. The general case is still an open question.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{The silver lining}
|
||||
\begin{itemize}
|
||||
\item Isospectral pairs are cool and all, but they cannot occur in dimension $3$.
|
||||
\item We can thus attempt to infer the shape of our universe based on its spectrum.
|
||||
\end{itemize}
|
||||
\end{frame}
|
66
main.tex
66
main.tex
|
@ -12,11 +12,17 @@
|
|||
\usepackage{tikz}
|
||||
\usepackage{pgfplots}
|
||||
\usepackage{verbatim}
|
||||
\usepackage{mathtools}
|
||||
\pgfplotsset{compat = newest}
|
||||
\usetikzlibrary{matrix}
|
||||
\usepackage[dvipsnames]{xcolor}
|
||||
\usetikzlibrary{perspective}
|
||||
|
||||
\DeclareMathOperator{\divergence}{div}
|
||||
\DeclareMathOperator{\lensop}{L}
|
||||
\DeclareMathOperator{\rotmat}{R}
|
||||
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
|
||||
|
||||
% cool color
|
||||
|
||||
\usepackage{xcolor}
|
||||
|
@ -43,6 +49,8 @@ code-for-last-col = \color{blue}
|
|||
|
||||
\maketitle
|
||||
|
||||
\section{Introduction & preliminaries}
|
||||
|
||||
\begin{frame}{Outline}
|
||||
%Should we make an outline?
|
||||
\begin{enumerate}%[<+->]
|
||||
|
@ -56,10 +64,10 @@ code-for-last-col = \color{blue}
|
|||
|
||||
% should we make is so that these bullet points appear one after another? Yes
|
||||
\begin{frame}{Abstracting Independence - Motivation}
|
||||
\begin{itemize}
|
||||
\begin{itemize}
|
||||
\item 1
|
||||
\item 2
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -71,49 +79,51 @@ code-for-last-col = \color{blue}
|
|||
ddgagagagaga
|
||||
\end{frame}
|
||||
|
||||
\include{isospectral}
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
\begin{itemize}
|
||||
\item Manifolds $M := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
|
||||
\begin{itemize}
|
||||
\item Manifolds $M := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
|
||||
|
||||
\item Helmholtz equation on $M$ given by
|
||||
$$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
||||
\item Helmholtz equation on $M$ given by
|
||||
$$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
||||
|
||||
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
|
||||
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
|
||||
|
||||
\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$
|
||||
\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$
|
||||
|
||||
\item Solutions to the Helmholtz equation are calculated for each $H$ and CMB anisotropies $\frac{\delta T}{T}$ computed
|
||||
\end{itemize}
|
||||
\item Solutions to the Helmholtz equation are calculated for each $H$ and CMB anisotropies $\frac{\delta T}{T}$ computed
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{comment}
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
\begin{itemize}
|
||||
\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
|
||||
\begin{itemize}
|
||||
\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
|
||||
\item If $H = \mathbb Z/m\mathbb Z$ for odd $m$ the set of wave numbers is $$\{1,3,\cdots, m\}\cup \{m+1, m+2, m+3, \cdots \}.$$
|
||||
\item If $H = O^*$, the binary tetrahedral group --- a subgroup of $SO(4)$ of size 24, the set of wave numbers is $$\{ 1,7,9 \} \cup \{13,15,17,\cdots \}.$$
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\end{comment}
|
||||
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces - Conclusion}
|
||||
\begin{itemize}
|
||||
\item For the majority of groups $H$ the anisotropies $\frac{\delta T}{T}$ do not coincide with observations
|
||||
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
|
||||
\begin{itemize}
|
||||
\item For the majority of groups $H$ the anisotropies $\frac{\delta T}{T}$ do not coincide with observations
|
||||
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\begin{figure}[H]
|
||||
\end{itemize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
|
||||
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
|
||||
\caption{Graphical representation of the binary tetrahedral group
|
||||
[5]}
|
||||
\label{fig:binary-octahedron}
|
||||
\end{figure}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -127,7 +137,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
|||
|
||||
\begin{frame}{CMB radiation in an inhomogeneous spherical space}
|
||||
|
||||
Manifolds
|
||||
Manifolds
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -141,23 +151,23 @@ Manifolds
|
|||
|
||||
\begin{frame}{To summerize}
|
||||
egqgaaf
|
||||
\begin{itemize}
|
||||
\begin{itemize}
|
||||
\item 1
|
||||
\item 2
|
||||
\item 3
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
||||
\begin{frame}{References}
|
||||
\begin{itemize}
|
||||
\begin{itemize}
|
||||
\item R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011.
|
||||
\item R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012.
|
||||
\item R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005.
|
||||
\item P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004.
|
||||
\item G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html.
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
|
||||
|
@ -183,9 +193,9 @@ Manifolds
|
|||
|
||||
|
||||
\begin{frame}{}
|
||||
\begin{center}
|
||||
\huge Thank You!
|
||||
\end{center}
|
||||
\begin{center}
|
||||
\huge Thank You!
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue