From acc7e17c1758481a36286f422113fa22f11fc13e Mon Sep 17 00:00:00 2001 From: prescientmoon <git@moonythm.dev> Date: Thu, 20 Mar 2025 16:46:52 +0100 Subject: [PATCH] Lens spaces and whatnot --- isospectral.tex | 2 ++ main.tex | 17 ++++++++++------- prerequisites.tex | 42 +++++++++++++++++++++++++++++++++++++----- 3 files changed, 49 insertions(+), 12 deletions(-) diff --git a/isospectral.tex b/isospectral.tex index 1d705e2..3492287 100644 --- a/isospectral.tex +++ b/isospectral.tex @@ -13,6 +13,7 @@ \end{enumerate} \end{frame} +\begin{comment} \begin{frame}{Can isospectral pairs approximate your mom} \begin{itemize} \item One of the problems the paper studies is finding volume-maximizing isospectral pairs of spherical forms (i.e. the spaces we are interested in). @@ -28,6 +29,7 @@ \item Together with a computational search, the paper builds a table of the solutions for a bunch of dimensions. The general case is still an open question. \end{itemize} \end{frame} +\end{comment} \begin{frame}{The silver lining} \begin{itemize} diff --git a/main.tex b/main.tex index 61b063c..7e47211 100644 --- a/main.tex +++ b/main.tex @@ -2,8 +2,6 @@ \usetheme{Warsaw} \usecolortheme{lily} - - % boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works \usepackage{graphicx} % Required for inserting images @@ -20,8 +18,12 @@ \DeclareMathOperator{\divergence}{div} \DeclareMathOperator{\lensop}{L} -\DeclareMathOperator{\rotmat}{R} +\DeclareMathOperator{\rotmatop}{R} +\DeclareMathOperator{\soop}{SO} \newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} % +\newcommand*{\so}[1]{\soop\left(#1\right)} +\newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)} +\renewcommand{\S}{\mathbb{S}} % cool color @@ -49,9 +51,12 @@ code-for-last-col = \color{blue} \setbeamertemplate{headline}{% \leavevmode% \begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}% - \hspace{.5em}\strut\insertsectionhead\hfill\mbox{}% + \mbox{}\hspace{.5em}\strut\insertsectionhead\hfill% \end{beamercolorbox}% } + +\setbeamercolor{block title}{fg=white, bg=purple!50!black} +\setbeamercolor{block body}{fg=black, bg=pink!20} \begin{document} @@ -76,10 +81,10 @@ code-for-last-col = \color{blue} \item 1 \item 2 \end{itemize} - \end{frame} \include{prerequisites} + \include{isospectral} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} @@ -123,7 +128,6 @@ code-for-last-col = \color{blue} \includegraphics[width=0.4\linewidth]{binary-octahedron.png} \caption{Graphical representation of the binary tetrahedral group [5]} - \label{fig:binary-octahedron} \end{figure} \end{frame} @@ -158,7 +162,6 @@ code-for-last-col = \color{blue} \centering \includegraphics[width=0.6\linewidth]{DSE-Test Graph} \caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].} - \label{fig:Decorrelated Statistical Spectrum} \end{figure} \end{frame} diff --git a/prerequisites.tex b/prerequisites.tex index 0f7edf6..920cbd1 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -1,9 +1,9 @@ \section{Prerequisites} -\begin{frame}{Introduction} +\begin{frame}{Manifolds \& Homotopy groups} \begin{figure}[H] \centering \includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png} - \caption{The prototypical example of a manifold a mug. Image source: [13]} + \caption{The prototypical example of a manifold a mug [13].} \label{fig:mug-neighbourhoods} \end{figure} @@ -11,11 +11,43 @@ \centering %$ \captionsetup{width=.75\linewidth} \includegraphics[width=0.2\linewidth]{Contractible loops.png} - \caption{Diagram showing two double tori with (non)-contractible paths. Image source[7]} + \caption{Two double tori with (non)-contractible paths [7].} \label{fig:CoLoop} \end{figure} \end{frame} -\begin{frame}{Preliminaries- quotient groups (Put actual title later)} - ddgagagagaga +\begin{frame}{Quotients of the $3$-sphere} + \begin{itemize} + \item $\so 4$ is isomorphic to the isometry group of $\S^3$ + \item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^3$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. + \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$. + \item This can be easily generalised to the $n$-sphere. + \end{itemize} +\end{frame} + +\begin{frame}{Lens spaces} + \begin{itemize} + \item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group. + \item They cannot be distinguished by their homotopy group alone. + \end{itemize} +\end{frame} +\begin{frame}{Lens spaces — the explicit construction} + \begin{definition}[Lens space] + Given $q \in \mathbb N$ and $s \in \mathbb Z ^n$ each coprime with $q$ + \begin{align*} + \lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle, + \end{align*} + where $\langle M \rangle$ is the group generated by + \begin{align*} + M_{q,s} \coloneq + \begin{pmatrix} + \rotmat{2 \pi s_1 / q} & & & \\ + & \rotmat{2 \pi s_2 / q} & & \\ + & & \ddots & \\ + & & & \rotmat{2 \pi s_n / q} + \end{pmatrix} + \end{align*} + \end{definition} + + In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb \mathbb Z$. \end{frame}