1
Fork 0

Add a gitignore

This commit is contained in:
prescientmoon 2025-03-20 13:51:38 +01:00
parent 330be51ba7
commit ae60024178
Signed by: prescientmoon
SSH key fingerprint: SHA256:UUF9JT2s8Xfyv76b8ZuVL7XrmimH4o49p4b+iexbVH4
2 changed files with 23 additions and 10 deletions

13
.gitignore vendored Normal file
View file

@ -0,0 +1,13 @@
*.aux
*.bbl
*.blg
*.fdb_latexmk
*.fls
*.log
*.out
*.synctex
*.synctex(busy)
main.pdf
paper.pdf
technology.pdf
*.synctex.gz

View file

@ -1,5 +1,5 @@
\documentclass{beamer}
\usetheme{Warsaw}
\usetheme{Warsaw}
\usecolortheme{lily}
@ -34,7 +34,7 @@ code-for-last-col = \color{blue}
%\institute{Presenting: Javier, Juš}
\date{March 24, 2025}
\date{March 24, 2025}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\rank}{r}
@ -50,7 +50,7 @@ code-for-last-col = \color{blue}
\item Part 1
\item Part 2
\item Part 3
\item etc
\item etc
\end{enumerate}
\end{frame}
@ -59,7 +59,7 @@ code-for-last-col = \color{blue}
\begin{itemize}
\item 1
\item 2
\end{itemize}
\end{itemize}
\end{frame}
@ -78,7 +78,7 @@ code-for-last-col = \color{blue}
\item Helmholtz equation on $M$ given by
$$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$
@ -88,7 +88,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
\begin{comment}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
\begin{itemize}
\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
@ -103,14 +103,14 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces - Conclusion}
\begin{itemize}
\item For the majority of groups $H$ the anisotropies $\frac{\delta T}{T}$ do not coincide with observations
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
\end{itemize}
\begin{figure}[H]
\centering
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
\caption{Graphical representation of the binary tetrahedral group
\caption{Graphical representation of the binary tetrahedral group
[5]}
\label{fig:binary-octahedron}
\end{figure}
@ -163,7 +163,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
\begin{frame}{References}
\begin{itemize}
\item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011.
\item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996.
\item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980.
@ -185,7 +185,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
\begin{frame}{}
\begin{center}
\huge Thank You!
\end{center}
\end{center}
\end{frame}
\end{document}