Add a gitignore
This commit is contained in:
parent
330be51ba7
commit
ae60024178
13
.gitignore
vendored
Normal file
13
.gitignore
vendored
Normal file
|
@ -0,0 +1,13 @@
|
|||
*.aux
|
||||
*.bbl
|
||||
*.blg
|
||||
*.fdb_latexmk
|
||||
*.fls
|
||||
*.log
|
||||
*.out
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
main.pdf
|
||||
paper.pdf
|
||||
technology.pdf
|
||||
*.synctex.gz
|
20
main.tex
20
main.tex
|
@ -1,5 +1,5 @@
|
|||
\documentclass{beamer}
|
||||
\usetheme{Warsaw}
|
||||
\usetheme{Warsaw}
|
||||
\usecolortheme{lily}
|
||||
|
||||
|
||||
|
@ -34,7 +34,7 @@ code-for-last-col = \color{blue}
|
|||
%\institute{Presenting: Javier, Juš}
|
||||
|
||||
|
||||
\date{March 24, 2025}
|
||||
\date{March 24, 2025}
|
||||
|
||||
\DeclareMathOperator{\cl}{cl}
|
||||
\DeclareMathOperator{\rank}{r}
|
||||
|
@ -50,7 +50,7 @@ code-for-last-col = \color{blue}
|
|||
\item Part 1
|
||||
\item Part 2
|
||||
\item Part 3
|
||||
\item etc
|
||||
\item etc
|
||||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
|
@ -59,7 +59,7 @@ code-for-last-col = \color{blue}
|
|||
\begin{itemize}
|
||||
\item 1
|
||||
\item 2
|
||||
\end{itemize}
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
|
@ -78,7 +78,7 @@ code-for-last-col = \color{blue}
|
|||
\item Helmholtz equation on $M$ given by
|
||||
$$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
||||
|
||||
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
|
||||
\item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number
|
||||
|
||||
\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$
|
||||
|
||||
|
@ -88,7 +88,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
|||
|
||||
|
||||
\begin{comment}
|
||||
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
\begin{itemize}
|
||||
\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
|
||||
|
@ -103,14 +103,14 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
|||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces - Conclusion}
|
||||
\begin{itemize}
|
||||
\item For the majority of groups $H$ the anisotropies $\frac{\delta T}{T}$ do not coincide with observations
|
||||
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
|
||||
\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textit{binary octahedral} and \textit{binary icosahedral} groups of order 48 and 120
|
||||
|
||||
|
||||
\end{itemize}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
|
||||
\caption{Graphical representation of the binary tetrahedral group
|
||||
\caption{Graphical representation of the binary tetrahedral group
|
||||
[5]}
|
||||
\label{fig:binary-octahedron}
|
||||
\end{figure}
|
||||
|
@ -163,7 +163,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
|||
|
||||
\begin{frame}{References}
|
||||
\begin{itemize}
|
||||
|
||||
|
||||
\item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011.
|
||||
\item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996.
|
||||
\item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980.
|
||||
|
@ -185,7 +185,7 @@ $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$
|
|||
\begin{frame}{}
|
||||
\begin{center}
|
||||
\huge Thank You!
|
||||
\end{center}
|
||||
\end{center}
|
||||
\end{frame}
|
||||
|
||||
\end{document}
|
||||
|
|
Loading…
Reference in a new issue