diff --git a/prerequisites.tex b/prerequisites.tex index 0df25fc..eaef080 100644 --- a/prerequisites.tex +++ b/prerequisites.tex @@ -19,7 +19,7 @@ \begin{frame}{Quotients of the $3$-sphere} \begin{itemize} - \item $\so 4$ is isomorphic to the isometry group of $\S^3$. + \item The group $\so 4$ is isomorphic to the isometry group of $\S^3$. \item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \pause \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.