diff --git a/main.tex b/main.tex index 9c0150c..fac78b8 100644 --- a/main.tex +++ b/main.tex @@ -77,14 +77,14 @@ code-for-last-col = \color{blue} \begin{figure}[H] \centering \includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png} - \caption{The prototypical example of a manifold -- a mug. Image source: [13]} + \caption{The prototypical example of a manifold a mug. Image source: [13]} \label{fig:mug-neighbourhoods} \end{figure} \begin{figure}[H] \centering %$ \captionsetup{width=.75\linewidth} - \includegraphics[width=0.27\linewidth]{Contractible loops.png} + \includegraphics[width=0.2\linewidth]{Contractible loops.png} \caption{Diagram showing two double tori with (non)-contractible paths. Image source[7]} \label{fig:CoLoop} \end{figure} @@ -98,12 +98,12 @@ code-for-last-col = \color{blue} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} \begin{itemize} - \item Manifolds $M := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite + \item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite - \item Helmholtz equation on $M$ given by - $$(\Delta + E_\beta^M)\psi_\beta^{M, i} = 0$$ + \item Helmholtz equation on $\textcolor{blue}{M}$ given by + $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$ - \item In fact $E_\beta^m = \beta^2-1$ for $\beta \in \mathbb{N}$ we call $\beta$ a wave number + \item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number \item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$ @@ -154,7 +154,8 @@ code-for-last-col = \color{blue} \begin{itemize} \item Multi-connected space: it has non-contractable loops - \item Inhomogeneous space: it does not look the same from every point on the + \item Inhomogeneous space: it does not look identical from every point in space + \item \end{itemize} \end{frame}