Add pauses
This commit is contained in:
parent
ea3caa20e7
commit
d58836550d
|
@ -8,6 +8,7 @@
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
\item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold.
|
\item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold.
|
||||||
|
\pause
|
||||||
\item The spectrum determines many things about the space (like its volume).
|
\item The spectrum determines many things about the space (like its volume).
|
||||||
\item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}.
|
\item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
@ -32,6 +33,12 @@
|
||||||
\end{comment}
|
\end{comment}
|
||||||
|
|
||||||
\begin{frame}{The silver lining}
|
\begin{frame}{The silver lining}
|
||||||
|
\begin{tikzpicture}
|
||||||
|
\clip (0,0) rectangle (\paperwidth,\paperheight);
|
||||||
|
\fill[color=orange] (\paperwidth-10pt,0) rectangle (\paperwidth,\paperheight);
|
||||||
|
% Added
|
||||||
|
\fill[color=orange](0,0) rectangle (10pt,\paperheight);
|
||||||
|
\end{tikzpicture}
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item Isospectral pairs are cool and all, but they cannot occur in dimension $3$.
|
\item Isospectral pairs are cool and all, but they cannot occur in dimension $3$.
|
||||||
\item We can thus attempt to infer the shape of our universe based on its spectrum.
|
\item We can thus attempt to infer the shape of our universe based on its spectrum.
|
||||||
|
|
|
@ -6,6 +6,7 @@
|
||||||
\caption{The prototypical example of a manifold a mug [13].}
|
\caption{The prototypical example of a manifold a mug [13].}
|
||||||
\label{fig:mug-neighbourhoods}
|
\label{fig:mug-neighbourhoods}
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
\pause
|
||||||
|
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\centering
|
\centering
|
||||||
|
@ -20,6 +21,7 @@
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
|
\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
|
||||||
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
|
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
|
||||||
|
\pause
|
||||||
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
|
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
|
||||||
\item This can be easily generalised to the $n$-sphere.
|
\item This can be easily generalised to the $n$-sphere.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
@ -49,5 +51,6 @@
|
||||||
\end{align*}
|
\end{align*}
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
|
\pause
|
||||||
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
|
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
|
||||||
\end{frame}
|
\end{frame}
|
||||||
|
|
Loading…
Reference in a new issue