1
Fork 0

Add pauses

This commit is contained in:
prescientmoon 2025-03-21 13:05:31 +01:00
parent ea3caa20e7
commit d58836550d
Signed by: prescientmoon
SSH key fingerprint: SHA256:UUF9JT2s8Xfyv76b8ZuVL7XrmimH4o49p4b+iexbVH4
3 changed files with 10 additions and 0 deletions

View file

@ -8,6 +8,7 @@
\end{align*} \end{align*}
\end{definition} \end{definition}
\item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold. \item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold.
\pause
\item The spectrum determines many things about the space (like its volume). \item The spectrum determines many things about the space (like its volume).
\item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}. \item When two distinct (up to isomorphism) manifolds share a spectrum, they for an \emph{isospectral pair}.
\end{enumerate} \end{enumerate}
@ -32,6 +33,12 @@
\end{comment} \end{comment}
\begin{frame}{The silver lining} \begin{frame}{The silver lining}
\begin{tikzpicture}
\clip (0,0) rectangle (\paperwidth,\paperheight);
\fill[color=orange] (\paperwidth-10pt,0) rectangle (\paperwidth,\paperheight);
% Added
\fill[color=orange](0,0) rectangle (10pt,\paperheight);
\end{tikzpicture}
\begin{itemize} \begin{itemize}
\item Isospectral pairs are cool and all, but they cannot occur in dimension $3$. \item Isospectral pairs are cool and all, but they cannot occur in dimension $3$.
\item We can thus attempt to infer the shape of our universe based on its spectrum. \item We can thus attempt to infer the shape of our universe based on its spectrum.

BIN
main.pdf

Binary file not shown.

View file

@ -6,6 +6,7 @@
\caption{The prototypical example of a manifold a mug [13].} \caption{The prototypical example of a manifold a mug [13].}
\label{fig:mug-neighbourhoods} \label{fig:mug-neighbourhoods}
\end{figure} \end{figure}
\pause
\begin{figure}[H] \begin{figure}[H]
\centering \centering
@ -20,6 +21,7 @@
\begin{itemize} \begin{itemize}
\item $\so 4$ is isomorphic to the isometry group of $\S^3$. \item $\so 4$ is isomorphic to the isometry group of $\S^3$.
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
\pause
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$. \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
\item This can be easily generalised to the $n$-sphere. \item This can be easily generalised to the $n$-sphere.
\end{itemize} \end{itemize}
@ -49,5 +51,6 @@
\end{align*} \end{align*}
\end{definition} \end{definition}
\pause
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$. In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
\end{frame} \end{frame}