From d7d9f7181cab211528c1e1b19297e0d294662205 Mon Sep 17 00:00:00 2001 From: "juso.koc" <juso.koc@gmail.com> Date: Fri, 21 Mar 2025 12:32:21 +0000 Subject: [PATCH] Update on Overleaf. --- isospectral.tex | 2 +- main.tex | 5 +++-- 2 files changed, 4 insertions(+), 3 deletions(-) diff --git a/isospectral.tex b/isospectral.tex index ffb2fae..7cab952 100644 --- a/isospectral.tex +++ b/isospectral.tex @@ -4,7 +4,7 @@ \begin{definition}[Laplace-Beltrami operator] a generalization of the Laplace operator to more general spaces \begin{align*} - \Delta f \coloneq \divergence \nabla f + \Delta f \coloneq \divergence \nabla f. \end{align*} \end{definition} \item The spectrum of this operator is a subset of $[0, \infty)$. We call it the \emph{spectrum} of the manifold. diff --git a/main.tex b/main.tex index 3c2d366..49cb633 100644 --- a/main.tex +++ b/main.tex @@ -4,6 +4,7 @@ \usecolortheme{lily} \setbeamertemplate{navigation symbols}{} + % boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works \usepackage{graphicx} % Required for inserting images @@ -120,7 +121,7 @@ code-for-last-col = \color{blue} \pause \item For the majority of groups $\Gamma$, the anisotropies $\frac{\delta T}{T}$ do not coincide with observations. \pause - \item The only groups for which it does are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively. + \item The only groups for which they do are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively. \pause \end{itemize} \begin{figure}[H] @@ -158,7 +159,7 @@ code-for-last-col = \color{blue} \begin{frame}{Statistical Isotropy and Hypothesis} \small \textbf{Theoretical Expectation:}\\ - From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2$.\\ + From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2.$\\ \begin{itemize} \pause \item The CMB temperature fluctuations can be expanded as: