From e16cf584a453ce0218843abb71312764f3fce52c Mon Sep 17 00:00:00 2001 From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl> Date: Thu, 20 Mar 2025 13:52:19 +0000 Subject: [PATCH] Update on Overleaf. --- main.tex | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index 33a40b9..03ec92f 100644 --- a/main.tex +++ b/main.tex @@ -87,7 +87,9 @@ code-for-last-col = \color{blue} \item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ \item Helmholtz equation on $\textcolor{blue}{M}$ given by - $$(\Delta + E_{\textcolor{red}}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$ + \begin{align*} + (\Delta + E_{\textcolor{red}}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0 + \end{align*} \item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number