From e16cf584a453ce0218843abb71312764f3fce52c Mon Sep 17 00:00:00 2001
From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl>
Date: Thu, 20 Mar 2025 13:52:19 +0000
Subject: [PATCH] Update on Overleaf.

---
 main.tex | 4 +++-
 1 file changed, 3 insertions(+), 1 deletion(-)

diff --git a/main.tex b/main.tex
index 33a40b9..03ec92f 100644
--- a/main.tex
+++ b/main.tex
@@ -87,7 +87,9 @@ code-for-last-col = \color{blue}
 		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
 
 		\item Helmholtz equation on $\textcolor{blue}{M}$ given by
-		      $$(\Delta + E_{\textcolor{red}}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
+		\begin{align*}
+		    (\Delta + E_{\textcolor{red}}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0 
+		\end{align*}
 
 		\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number