Merge branch 'master' of https://git.overleaf.com/67dbe68df0414d63b309f98a
This commit is contained in:
commit
e4e4c0f8de
|
@ -44,7 +44,7 @@
|
|||
|
||||
\begin{frame}{The silver lining}
|
||||
\begin{itemize}
|
||||
\item Isospectral pairs are intriguing in their own right, but they cannot occur in dimension $3$.
|
||||
\item Isospectral manifolds are intriguing in their own right, but in dimension 3 all isospectral manifolds are isometric.
|
||||
\item We can thus attempt to infer the shape of our universe based on its spectrum.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
|
11
main.tex
11
main.tex
|
@ -44,9 +44,9 @@ code-for-last-col = \color{blue}
|
|||
}
|
||||
|
||||
|
||||
\title{Computing CMB temperature fluctuations for spherical spaces}
|
||||
\title{Computing CMB Temperature Fluctuations for Spherical Spaces}
|
||||
\author{Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar}
|
||||
%\institute{Presenting: Javier, Juš}
|
||||
\institute{University of Groningen}
|
||||
|
||||
|
||||
\date{March 24, 2025}
|
||||
|
@ -97,7 +97,7 @@ code-for-last-col = \color{blue}
|
|||
(\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0.
|
||||
\end{align*}
|
||||
\pause
|
||||
\item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$. We call $\textcolor{red}{\beta}$ a wave number.
|
||||
\item In fact $E_{\textcolor{red}{\beta}}^M = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$. We call $\textcolor{red}{\beta}$ a wave number.
|
||||
\pause
|
||||
\item The set of all possible wave numbers [for which a nonzero solution exists] depends on $\Gamma$ - usually a proper subset of $\mathbb{{N}}$.
|
||||
\pause
|
||||
|
@ -141,6 +141,7 @@ code-for-last-col = \color{blue}
|
|||
\begin{frame}{Inhomogeneous spherical space}
|
||||
|
||||
\begin{itemize}
|
||||
\pause
|
||||
\item Manifolds of the form $\S^3/\Gamma$ with $\Gamma$ a group acting on $\S^3$.
|
||||
\item \textcolor{red}{Multi-connected} space: it has non-contractable loops.
|
||||
\item \textcolor{red}{Inhomogeneous} space: it does not look identical from every point in space.
|
||||
|
@ -170,7 +171,7 @@ code-for-last-col = \color{blue}
|
|||
\Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \textcolor{blue}{a_{\ell m}} Y_{\ell m}(\hat{n})
|
||||
\]
|
||||
\pause
|
||||
\item If the universe is isotropic, the \textbf{mean of the harmonic coefficients} should satisfy:
|
||||
\item If the universe is \textcolor{red}{isotropic, the \textbf{mean of the harmonic coefficients} should satisfy:
|
||||
\[
|
||||
\langle \textcolor{blue}{a_{\ell m}} \rangle = 0
|
||||
\]
|
||||
|
@ -227,7 +228,7 @@ code-for-last-col = \color{blue}
|
|||
\textbf{Possible Explanations:}
|
||||
\begin{itemize}
|
||||
\item A real cosmological signal? → A finite universe or new physics.
|
||||
\item A systematic effect? → Foreground contamination or instrumental noise.
|
||||
\item A systematic effect? → Technological or theory related limitations.
|
||||
\end{itemize}
|
||||
\end{columns}
|
||||
\end{frame}
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
|
||||
\caption{The prototypical example of a manifold a mug [13].}
|
||||
\caption{The prototypical example of a manifold -- a mug [13].}
|
||||
\label{fig:mug-neighbourhoods}
|
||||
\end{figure}
|
||||
\pause
|
||||
|
|
Loading…
Reference in a new issue