diff --git a/main.pdf b/main.pdf
index 6bad4a9..98d316f 100644
Binary files a/main.pdf and b/main.pdf differ
diff --git a/main.tex b/main.tex
index 9c549e4..0821640 100644
--- a/main.tex
+++ b/main.tex
@@ -59,10 +59,8 @@ code-for-last-col = \color{blue}
 
 \setbeamercolor{block title}{fg=white, bg=purple!50!black}
 \setbeamercolor{block body}{fg=black, bg=pink!20}
-
-
-
 \setbeamercolor{titlebox}{fg=black,bg=white}
+
 \begin{document}
 
 \section{Introduction}
@@ -70,7 +68,7 @@ code-for-last-col = \color{blue}
  {
   \usebackgroundtemplate{\includegraphics[height=\paperheight]{cmb.png}}
   \begin{frame}
-	  \begin{beamercolorbox}[center]{titlebox}%
+	  \begin{beamercolorbox}[center]{titlebox}
 		  \titlepage
 	  \end{beamercolorbox}
   \end{frame}
@@ -79,12 +77,11 @@ code-for-last-col = \color{blue}
 \include{prerequisites}
 \include{isospectral}
 
-\section{CMB Anisotropy of Spherical Spaces
-}
+\section{CMB Anisotropy of Spherical Spaces}
 
 \begin{frame}[fragile]{Homogeneous Spherical Spaces}
 	\begin{itemize}
-    \item Finite subgroup $\Gamma \leq \so 4.$
+		\item Finite subgroup $\Gamma \leq \so 4.$
 		\item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum of the underlying manifold as its solutions, and is given by
 		      \begin{align*}
 			      (\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0.
@@ -149,81 +146,81 @@ code-for-last-col = \color{blue}
 \section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}
 
 \begin{frame}{Statistical Isotropy and Hypothesis}
-\small
-    \textbf{Theoretical Expectation:}\\
-    From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2$.\\
-    \begin{itemize}
-        \item The CMB temperature fluctuations can be expanded as:
-        \[
-        \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n})
-        \]
-        \item If the universe is isotropic, the \textbf{mean of the harmonic coefficients} should satisfy:
-        \[
-        \langle a_{\ell m} \rangle = 0
-        \]
-    \end{itemize}
+	\small
+	\textbf{Theoretical Expectation:}\\
+	From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2$.\\
+	\begin{itemize}
+		\item The CMB temperature fluctuations can be expanded as:
+		      \[
+			      \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\hat{n})
+		      \]
+		\item If the universe is isotropic, the \textbf{mean of the harmonic coefficients} should satisfy:
+		      \[
+			      \langle a_{\ell m} \rangle = 0
+		      \]
+	\end{itemize}
 
-    \textbf{Key Question:}  
-    - Does the observed CMB data deviate from statistical isotropy?  
-    - If \( \langle a_{\ell m} \rangle \neq 0 \), this suggests a preferred cosmic direction.  
+	\textbf{Key Question:}
+	- Does the observed CMB data deviate from statistical isotropy?
+	- If \( \langle a_{\ell m} \rangle \neq 0 \), this suggests a preferred cosmic direction.
 \end{frame}
 
 \begin{frame}{Methodology: Sky Masking and the Test Statistic}
-\small
-    \textbf{Challenges in Real Observations:}
-    \begin{itemize}
-        \item We cannot observe the full CMB sky due to foreground contamination.
-        \item A \textbf{sky mask function} \( A(\hat{n}) \) removes contaminated regions, but introduces bias.
-        \item The test statistic \( S_i \) is used, with a matrix $W$ to correct for these effects:
-        \[
-        S_i = \sum_{j} W_{ij} M_j
-        \]
-    \end{itemize}
-    
-    \textbf{Monte Carlo Simulations:}
-    \begin{itemize}
-        \item We generate thousands of \textbf{simulated CMB skies} assuming isotropy.
-        \item Each sky has different random \( a_{\ell m} \), drawn from:
-        \[
-        a_{\ell m} \sim \mathcal{N} (0, C_\ell)
-        \]
-        \item The observed WMAP data is compared against these simulations.
-    \end{itemize}
+	\small
+	\textbf{Challenges in Real Observations:}
+	\begin{itemize}
+		\item We cannot observe the full CMB sky due to foreground contamination.
+		\item A \textbf{sky mask function} \( A(\hat{n}) \) removes contaminated regions, but introduces bias.
+		\item The test statistic \( S_i \) is used, with a matrix $W$ to correct for these effects:
+		      \[
+			      S_i = \sum_{j} W_{ij} M_j
+		      \]
+	\end{itemize}
+
+	\textbf{Monte Carlo Simulations:}
+	\begin{itemize}
+		\item We generate thousands of \textbf{simulated CMB skies} assuming isotropy.
+		\item Each sky has different random \( a_{\ell m} \), drawn from:
+		      \[
+			      a_{\ell m} \sim \mathcal{N} (0, C_\ell)
+		      \]
+		\item The observed WMAP data is compared against these simulations.
+	\end{itemize}
 \end{frame}
 
 
 \begin{frame}{Results and Interpretation}
-\small
-  \begin{columns}
-    \column{0.5\textwidth}
-	\begin{figure}
-		\centering
-		\includegraphics[width=6.2cm]{DSE-Test Graph}
-		\caption{The decorrelated band mean test statistic values over multipole ranges [9].}
-	\end{figure}
-    \column{0.5\textwidth}
-    \textbf{Key Findings:}
-    \begin{itemize}
-        \item A statistically significant deviation was found in \( 221 \leq \ell \leq 240 \).
-        \item This suggests a potential \textcolor{red}{preferred cosmic direction}.
-    \end{itemize}
+	\small
+	\begin{columns}
+		\column{0.5\textwidth}
+		\begin{figure}
+			\centering
+			\includegraphics[width=6.2cm]{DSE-Test Graph}
+			\caption{The decorrelated band mean test statistic values over multipole ranges [9].}
+		\end{figure}
+		\column{0.5\textwidth}
+		\textbf{Key Findings:}
+		\begin{itemize}
+			\item A statistically significant deviation was found in \( 221 \leq \ell \leq 240 \).
+			\item This suggests a potential \textcolor{red}{preferred cosmic direction}.
+		\end{itemize}
 
-    \textbf{Possible Explanations:}
-    \begin{itemize}
-        \item A real cosmological signal? → A finite universe or new physics.
-        \item A systematic effect? → Foreground contamination or instrumental noise. 
-    \end{itemize}
-  \end{columns}
+		\textbf{Possible Explanations:}
+		\begin{itemize}
+			\item A real cosmological signal? → A finite universe or new physics.
+			\item A systematic effect? → Foreground contamination or instrumental noise.
+		\end{itemize}
+	\end{columns}
 \end{frame}
 
 
 \section{Conclusion}
 \begin{frame}{Conclusion}
 	\begin{enumerate}
-	    \item We can infer the shape of the universe from its spectrum
-        \item There are two homogeneous spherical manifolds obtained as $\S^3/\Gamma$ which produce CMB similar to observations
-        \item Inhomogeneous spherical spaces exhibit varied behavior of CMB anisotropies
-        \item Statistical test results suggest possibilities of finite multi-connected topology
+		\item We can infer the shape of the universe from its spectrum
+		\item There are two homogeneous spherical manifolds obtained as $\S^3/\Gamma$ which produce CMB similar to observations
+		\item Inhomogeneous spherical spaces exhibit varied behavior of CMB anisotropies
+		\item Statistical test results suggest possibilities of finite multi-connected topology
 	\end{enumerate}
 \end{frame}