diff --git a/main.tex b/main.tex index e4e8669..7198a8b 100644 --- a/main.tex +++ b/main.tex @@ -24,6 +24,7 @@ \newcommand*{\so}[1]{\soop\left(#1\right)} \newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)} \renewcommand{\S}{\mathbb{S}} +\newcommand{\R}{\mathbb{R}} % cool color @@ -124,11 +125,12 @@ code-for-last-col = \color{blue} \end{frame} +\section{CMB radiation in an inhomogeneous spherical space} -\begin{frame}{CMB radiation in an inhomogeneous spherical space} +\begin{frame}{Inhomogeneous spherical space} \begin{itemize} - \item Manifolds of the form $\mathbb S/\Gamma$ with $\Gamma$ a group acting on $\mathbb S^3$. + \item Manifolds of the form $\S^3/\Gamma$ with $\Gamma$ a group acting on $\S^3$. \item Multi-connected space: it has non-contractable loops \item Inhomogeneous space: it does not look identical from every point in space \item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence: @@ -136,7 +138,7 @@ code-for-last-col = \color{blue} \item homogeneous: $N3$ and $L(8,1)$ \item inhomogeneous: $N2 \equiv L(8,3)$ \end{enumerate} - \item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because different observation points have + \item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is observer dependent. \end{itemize}