diff --git a/main.tex b/main.tex index 61b063c..8c7dbea 100644 --- a/main.tex +++ b/main.tex @@ -84,10 +84,10 @@ code-for-last-col = \color{blue} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} \begin{itemize} - \item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite + \item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ \item Helmholtz equation on $\textcolor{blue}{M}$ given by - $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$ + $$(\Delta + E_\textcolor{red} {\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$ \item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number