From f7a05baed6374a4df57f93c21565136efa2c4951 Mon Sep 17 00:00:00 2001
From: Bela Gabriel Schneider <b.g.schneider@student.rug.nl>
Date: Thu, 20 Mar 2025 13:50:04 +0000
Subject: [PATCH] Update on Overleaf.

---
 main.tex | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/main.tex b/main.tex
index 61b063c..8c7dbea 100644
--- a/main.tex
+++ b/main.tex
@@ -84,10 +84,10 @@ code-for-last-col = \color{blue}
 
 \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
 	\begin{itemize}
-		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
+		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
 
 		\item Helmholtz equation on $\textcolor{blue}{M}$ given by
-		      $$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
+		      $$(\Delta + E_\textcolor{red} {\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
 
 		\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number