\documentclass{beamer} \usetheme{Warsaw} \usepackage{amsmath, amssymb} \usecolortheme{lily} \setbeamertemplate{navigation symbols}{} % boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works \usepackage{graphicx} % Required for inserting images \usepackage{caption} \usepackage{subcaption} \usepackage{tikz} \usepackage{pgfplots} \usepackage{verbatim} \usepackage{mathtools} \pgfplotsset{compat = newest} \usetikzlibrary{matrix} \usepackage[dvipsnames]{xcolor} \usetikzlibrary{perspective} \DeclareMathOperator{\divergence}{div} \DeclareMathOperator{\lensop}{L} \DeclareMathOperator{\rotmatop}{R} \DeclareMathOperator{\soop}{SO} \newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} % \newcommand*{\so}[1]{\soop\left(#1\right)} \newcommand*{\rotmat}[1]{\textcolor{red}{\rotmatop\left(\textcolor{black}{#1}\right)}} \renewcommand{\S}{\mathbb{S}} \newcommand{\R}{\mathbb{R}} \newcommand{\sparkles}{\includegraphics[height=0.9em]{sparkles.png}} \newcommand{\ghostzero}{\textcolor{lightgray}{0}} % cool color \usepackage{xcolor} \usepackage{nicematrix} \NiceMatrixOptions{ code-for-first-row = \color{red} , code-for-last-row = \color{blue} , code-for-first-col = \color{blue} , code-for-last-col = \color{blue} } \title{Computing CMB Temperature Fluctuations for Spherical Spaces} \author{Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar} \institute{University of Groningen} \date{March 24, 2025} \DeclareMathOperator{\cl}{cl} \DeclareMathOperator{\rank}{r} % Define custom headline \setbeamertemplate{headline}{% \leavevmode% \begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}% \mbox{}\hspace{.5em}\strut\insertsectionhead\mbox{}\hfill\strut {\insertframenumber/\inserttotalframenumber}\mbox{}\strut\hspace{.5em}\mbox{}% \end{beamercolorbox}% } \setbeamercolor{block title}{fg=white, bg=purple!50!black} \setbeamercolor{block body}{fg=black, bg=pink!20} \setbeamercolor{titlebox}{fg=black,bg=white} \definecolor{silver}{RGB}{192, 192, 192} \definecolor{darkyellow}{RGB}{186, 142, 35} \begin{document} \section{Introduction} { \usebackgroundtemplate{\includegraphics[height=\paperheight]{cmb.png}} \begin{frame} \begin{beamercolorbox}[center]{titlebox} \titlepage \end{beamercolorbox} \end{frame} } \include{prerequisites} \include{isospectral} \section{CMB Anisotropy of Spherical Spaces} \begin{frame}[fragile]{Homogeneous Spherical Spaces} \begin{itemize} \pause \item Finite subgroup $\Gamma \leqslant \so 4.$ \pause \item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum of the underlying manifold as its solutions, and is given by \begin{align*} (\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0. \end{align*} \pause \item In fact $E_{\textcolor{red}{\beta}}^M = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$. We call $\textcolor{red}{\beta}$ a wave number. \pause \item The set of all possible wave numbers [for which a nonzero solution exists] depends on $\Gamma$ - usually a proper subset of $\mathbb{{N}}$. \pause \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\textcolor{purple}{\frac{\delta T}{T}}$ computed as a sum of spherical harmonics. \end{itemize} \end{frame} \begin{comment} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} \begin{itemize} \item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$ \item If $H = \mathbb Z/m\mathbb Z$ for odd $m$ the set of wave numbers is $$\{1,3,\cdots, m\}\cup \{m+1, m+2, m+3, \cdots \}.$$ \item If $H = O^*$, the binary tetrahedral group --- a subgroup of $SO(4)$ of size 24, the set of wave numbers is $$\{ 1,7,9 \} \cup \{13,15,17,\cdots \}.$$ \end{itemize} \end{frame} \end{comment} \begin{frame}[fragile]{Homogenous Spherical Spaces --- Results} \begin{itemize} \pause \item For the majority of groups $\Gamma$, the anisotropies $\textcolor{purple}{\frac{\delta T}{T}}$ do not coincide with observations. \pause \item The only groups for which they do are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively. \pause \end{itemize} \begin{figure}[H] \centering \includegraphics[width=0.4\linewidth]{binary-octahedron.png} \caption{Graphical representation of the binary tetrahedral group [5]} \end{figure} \end{frame} \section{CMB Radiation in an Inhomogeneous Spherical Space} \begin{frame}{Inhomogeneous spherical space} \begin{itemize} \pause \item Manifolds of the form $\S^3/\Gamma$ with $\Gamma$ a group acting on $\S^3$. \item \textcolor{red}{Multi-connected} space: it has non-contractible loops. \item \textcolor{red}{Inhomogeneous} space: it does not look identical from every point in space. \pause \item Fixing $|\Gamma|=8$, we have \textcolor{red}{three} multi-connected manifolds, up to equivalence: \pause \begin{enumerate} \item homogeneous: $N3$ and $\lens 8 1 $. \item inhomogeneous: $N2 \equiv \lens 8 3 $. \end{enumerate} \pause \item Results: inhomogeneous spaces have \textcolor{red}{more variety} in the CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is \textcolor{red}{observer dependent}. \end{itemize} \end{frame} \section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space} \begin{frame}{Statistical Isotropy and Hypothesis} \small \textbf{Theoretical Expectation:}\\ From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $\mathbb{S}^2.$\\ \begin{itemize} \pause \item The CMB temperature fluctuations can be expanded as: \[ \Delta T(\hat{n}) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \textcolor{blue}{a_{\ell m}} Y_{\ell m}(\hat{n}). \] \pause \item If the universe is \textcolor{red}{isotropic}, the \textbf{mean of the harmonic coefficients} should satisfy \[ \langle \textcolor{blue}{a_{\ell m}} \rangle = 0. \] \end{itemize} \pause \textbf{Key Question:} Does the observed CMB data deviate from statistical isotropy? If \( \langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0 \), this suggests a preferred cosmic direction. \end{frame} \begin{frame}{Methodology: Sky Masking and the Test Statistic} \small \textbf{Challenges in Real Observations:} \begin{itemize} \item We cannot observe the full CMB sky due to foreground contamination. \item A \textbf{sky mask function} \( A(\hat{n}) \) removes contaminated regions but introduces bias. \pause \item The test statistic \( S_i \) is used, with a matrix $W$ to correct for these effects: \[ S_i = \sum_{j} W_{ij} M_j. \] \end{itemize} \pause \textbf{Monte Carlo Simulations:} \begin{itemize} \item We generate thousands of \textbf{simulated CMB skies} assuming isotropy. \item Each sky has different random \( a_{\ell m} \), drawn from: \[ \textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell). \] \item The observed WMAP data is compared against these simulations. \end{itemize} \end{frame} \begin{frame}{Results and Interpretation} \small \begin{columns} \column{0.5\textwidth} \begin{figure} \centering \includegraphics[width=6.2cm]{DSE-Test Graph} \caption{The decorrelated band mean test statistic values over multipole ranges [9].} \end{figure} \column{0.5\textwidth} \pause \textbf{Key Findings:} \begin{itemize} \item A statistically significant deviation was found in \( 221 \leq \ell \leq 240 \). \item This suggests a potential \textcolor{red}{preferred cosmic direction}. \end{itemize} \pause \textbf{Possible Explanations:} \begin{itemize} \item A real cosmological signal? → A \textcolor{red}{finite universe} or new physics. \item A systematic effect? → Technological or theory-related limitations. \end{itemize} \end{columns} \end{frame} \section{Conclusion} \begin{frame}{Conclusion} \pause \begin{enumerate} \item We can infer the \textcolor{blue}{shape} of the universe from its \textcolor{blue}{spectrum}. \pause \item There are two homogeneous spherical manifolds obtained as $\S^3/\Gamma$ which produce CMB similar to observations. \pause \item Inhomogeneous spherical spaces exhibit varied behavior of CMB anisotropies. \pause \item Statistical test results suggest possibilities of \textcolor{red}{finite multi-connected} topology. \end{enumerate} \end{frame} \section{References} \begin{frame}{References} \begin{itemize} \item [1] R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011. \item [2] R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012. \item [3] R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005. \item [4] P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004. \item [5]G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html. \end{itemize} \end{frame} \begin{frame}{References 2 --- Electric Boogaloo} \begin{itemize} \item [6] N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011. \item [7] M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996. \item [8] A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980. \item [9] D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012. \item [10] P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013. \end{itemize} \end{frame} \begin{frame}{References 3 --- the References Strike Again} \begin{itemize} \item [11] E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025. \item [12] R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002. \item [13] M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025. \item [14] B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020. \end{itemize} \end{frame} \begin{frame}{} \begin{figure}[H] \centering \includegraphics[width=.4\paperwidth]{qrcode.png} \end{figure} \begin{center} \huge \sparkles\: Thank You! \sparkles \end{center} \end{frame} \end{document}