\section{Prerequisites}
\begin{frame}{Manifolds \& Homotopy Groups}
	\begin{figure}[H]
		\centering
		\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
		\caption{The prototypical example of a manifold -- a mug [13].}
		\label{fig:mug-neighbourhoods}
	\end{figure}
	\pause

	\begin{figure}[H]
		\centering
		%$ \captionsetup{width=.75\linewidth}
		\includegraphics[width=0.2\linewidth]{Contractible loops.png}
		\caption{Two double tori with (non)-contractible paths [7].}
		\label{fig:CoLoop}
	\end{figure}
\end{frame}

\begin{frame}{Quotients of the $3$-sphere}
	\begin{itemize}
		\item The group $\so 4$ is isomorphic to the isometry group of $\S^3$.
		\item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
		      \pause
		\item The obtain space is (\emph{sometimes}) a manifold. In particular, the finite $\Gamma$ we will consider guarantee the manifold to be well defined and spherical.
		\item This can be easily generalized to the $n$-sphere.
	\end{itemize}
\end{frame}

\begin{frame}{Lens Spaces}
	\begin{itemize}
		\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
		\item They cannot be distinguished by their homotopy group alone.
	\end{itemize}
	\pause
	\begin{definition}[Lens space]
		Given coprime $p, z \in \mathbb Z$, we define
		\begin{align*}
			\lens p q \coloneq \S^3/\langle M \rangle,
		\end{align*}
		where $\langle M \rangle$ is the group generated by
		\begin{align*}
			M \coloneq
			\begin{bmatrix*}[r]
				\cos{(2 \pi / p)} & \sin{(-2 \pi / p)} & \ghostzero          & \ghostzero           \\
				\sin{(2 \pi / p)} & \cos{(2 \pi / p)}  & \ghostzero          & \ghostzero           \\
				\ghostzero        & \ghostzero         & \cos{(2 \pi q / p)} & \sin{(-2 \pi q / p)} \\
				\ghostzero        & \ghostzero         & \sin{(2 \pi q / p)} & \cos{(2 \pi q / p)}
			\end{bmatrix*}.
			% \begin{pmatrix}
			% 	\rotmat{2 \pi s_1 / q} &                        &        &                        \\
			% 	                       & \rotmat{2 \pi s_2 / q} &        &                        \\
			% 	                       &                        & \ddots &                        \\
			% 	                       &                        &        & \rotmat{2 \pi s_n / q}
			% \end{pmatrix}.
		\end{align*}
	\end{definition}

	% \pause
	% In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
\end{frame}