\documentclass{beamer} \usetheme{Warsaw} \usecolortheme{lily} % boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works \usepackage{graphicx} % Required for inserting images \usepackage{caption} \usepackage{subcaption} \usepackage{tikz} \usepackage{pgfplots} \usepackage{verbatim} \usepackage{mathtools} \pgfplotsset{compat = newest} \usetikzlibrary{matrix} \usepackage[dvipsnames]{xcolor} \usetikzlibrary{perspective} \DeclareMathOperator{\divergence}{div} \DeclareMathOperator{\lensop}{L} \DeclareMathOperator{\rotmatop}{R} \DeclareMathOperator{\soop}{SO} \newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} % \newcommand*{\so}[1]{\soop\left(#1\right)} \newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)} \renewcommand{\S}{\mathbb{S}} % cool color \usepackage{xcolor} \usepackage{nicematrix} \NiceMatrixOptions{ code-for-first-row = \color{red} , code-for-last-row = \color{blue} , code-for-first-col = \color{blue} , code-for-last-col = \color{blue} } \title{Computing CMB temperature fluctuations for spherical spaces} \author{Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar} %\institute{Presenting: Javier, Juš} \date{March 24, 2025} \DeclareMathOperator{\cl}{cl} \DeclareMathOperator{\rank}{r} % Define custom headline \setbeamertemplate{headline}{% \leavevmode% \begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}% \mbox{}\hspace{.5em}\strut\insertsectionhead\hfill% \end{beamercolorbox}% } \setbeamercolor{block title}{fg=white, bg=purple!50!black} \setbeamercolor{block body}{fg=black, bg=pink!20} \setbeamercolor{titlebox}{fg=black,bg=white} \begin{document} \section{Introduction} { \usebackgroundtemplate{\includegraphics[height=\paperheight]{cmb.png}} \begin{frame} \begin{beamercolorbox}[center]{titlebox}% \titlepage \end{beamercolorbox} \end{frame} } \include{prerequisites} \include{isospectral} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} \begin{itemize} \item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum as its solutions, and is given by \begin{align*} (\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0. \end{align*} \item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number. \item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $\Gamma$. \item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\frac{\delta T}{T}$ computed. \end{itemize} \end{frame} \begin{comment} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces} \begin{itemize} \item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$ \item If $H = \mathbb Z/m\mathbb Z$ for odd $m$ the set of wave numbers is $$\{1,3,\cdots, m\}\cup \{m+1, m+2, m+3, \cdots \}.$$ \item If $H = O^*$, the binary tetrahedral group --- a subgroup of $SO(4)$ of size 24, the set of wave numbers is $$\{ 1,7,9 \} \cup \{13,15,17,\cdots \}.$$ \end{itemize} \end{frame} \end{comment} \begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces — Conclusion} \begin{itemize} \item For the majority of groups $\Gamma$, the anisotropies $\frac{\delta T}{T}$ do not coincide with observations. \item The only groups for which it does are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively. \end{itemize} \begin{figure}[H] \centering \includegraphics[width=0.35\linewidth]{binary-octahedron.png} \caption{Graphical representation of the binary tetrahedral group [5]} \end{figure} \end{frame} \begin{frame}{CMB radiation in an inhomogeneous spherical space} \begin{itemize} \item Manifolds of the form $\mathbb S/\Gamma$ with $\Gamma$ a group acting on $\mathbb S^3$. \item Multi-connected space: it has non-contractable loops. \item Inhomogeneous space: it does not look identical from every point in space. \item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence: \begin{enumerate} \item homogeneous: $N3$ and $L(8,1)$ \item inhomogeneous: $N2 \equiv L(8,3)$ \end{enumerate} \item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because different observation points have. \end{itemize} \end{frame} \section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space} \begin{frame}{The setup} From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. We expand $\Delta T(\hat{n})$ using \emph{spherical harmonics}, yielding coefficients $a_{\ell m}$. We assume the fluctuations: \begin{itemize} \item Statistically isotropic and homogeneous in the mean. \item Gaussian distribution. \item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables. \end{itemize} Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$. \textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe} \end{frame} \begin{frame}{The setup} Real CMB observations are affected by instrumental noise and \textit{sky masking}. So, estimating $C_\ell$ accurately requires simulations. Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky \[ \textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}). \] However, this introduces bias, which must be corrected using a decorrelation matrix $W$, and a \textit{sky mask} matrix $M$ which accounts for issues caused by masking effects. Giving us the test statistic (tests the assumption of statistical isotropy): \[ S_i = \sum_{j} W_{ij} M_j, \] Which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges. \\ \textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe} \end{frame} \begin{frame}{The Results} \begin{figure} [h!] \centering \includegraphics[width=0.7\linewidth]{DSE-Test Graph} \caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].} \end{figure} \textcolor{red}{Remark}: In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum. \end{frame} \section{Conclusion} \begin{frame}{Conclusion} akbbfbsKJBKJBLJs \end{frame} \begin{frame}{To summerize} egqgaaf \begin{itemize} \item 1 \item 2 \item 3 \end{itemize} \end{frame} \section{References} \begin{frame}{References} \begin{itemize} \item R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011. \item R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012. \item R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005. \item P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004. \item G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html. \end{itemize} \end{frame} \begin{frame}{References} \begin{itemize} \item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011. \item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996. \item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980. \item D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012. \item P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013. \end{itemize} \end{frame} \begin{frame}{References} \begin{itemize} \item E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025. \item R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002. \item M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025. \item B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020. \end{itemize} \end{frame} \begin{frame}{} \begin{center} \huge Thank You! \end{center} \end{frame} \end{document}