\documentclass{beamer}
\usetheme{Warsaw}
\usecolortheme{lily}

% boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works

\usepackage{graphicx} % Required for inserting images
\usepackage{caption}
\usepackage{subcaption}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{verbatim}
\usepackage{mathtools}
\pgfplotsset{compat = newest}
\usetikzlibrary{matrix}
\usepackage[dvipsnames]{xcolor}
\usetikzlibrary{perspective}

\DeclareMathOperator{\divergence}{div}
\DeclareMathOperator{\lensop}{L}
\DeclareMathOperator{\rotmatop}{R}
\DeclareMathOperator{\soop}{SO}
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
\newcommand*{\so}[1]{\soop\left(#1\right)}
\newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)}
\renewcommand{\S}{\mathbb{S}}

% cool color

\usepackage{xcolor}
\usepackage{nicematrix}
\NiceMatrixOptions{
code-for-first-row = \color{red} ,
code-for-last-row = \color{blue} ,
code-for-first-col = \color{blue} ,
code-for-last-col = \color{blue}
}


\title{Computing CMB temperature fluctuations for spherical spaces}
\author{Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar}
%\institute{Presenting: Javier, Juš}


\date{March 24, 2025}

\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\rank}{r}

% Define custom headline
\setbeamertemplate{headline}{%
  \leavevmode%
  \begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}%
    \mbox{}\hspace{.5em}\strut\insertsectionhead\hfill%
  \end{beamercolorbox}%
}

\setbeamercolor{block title}{fg=white, bg=purple!50!black}
\setbeamercolor{block body}{fg=black, bg=pink!20}



\setbeamercolor{titlebox}{fg=black,bg=white}
\begin{document}

{
\usebackgroundtemplate{\includegraphics[height=\paperheight]{cmb.png}}
\begin{frame}
	\begin{beamercolorbox}[center]{titlebox}%
		\titlepage
	\end{beamercolorbox}
\end{frame}
}

\section{Introduction}

\begin{frame}{Outline}
\end{frame}

\include{prerequisites}
\include{isospectral}

\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
	\begin{itemize}
		\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$

		\item Helmholtz equation on $\textcolor{blue}{M}$ given by
		      \begin{align*}
			      (\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0
		      \end{align*}

		\item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number

		\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $H$

		\item Solutions to the Helmholtz equation are calculated for each $H$ and CMB anisotropies $\frac{\delta T}{T}$ computed
	\end{itemize}
\end{frame}


\begin{comment}

\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
	\begin{itemize}
		\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
		\item If $H = \mathbb Z/m\mathbb Z$ for odd $m$ the set of wave numbers is $$\{1,3,\cdots, m\}\cup \{m+1, m+2, m+3, \cdots \}.$$
		\item  If $H = O^*$, the binary tetrahedral group --- a subgroup of $SO(4)$ of size 24, the set of wave numbers is $$\{ 1,7,9 \} \cup \{13,15,17,\cdots \}.$$
	\end{itemize}
\end{frame}

\end{comment}


\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces - Conclusion}
	\begin{itemize}
		\item For the majority of groups $H$ the anisotropies $\frac{\delta T}{T}$ do not coincide with observations
		\item The only for which it does are $H = O^*$ and $H = I^*.$ the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120


	\end{itemize}
	\begin{figure}[H]
		\centering
		\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
		\caption{Graphical representation of the binary tetrahedral group
				[5]}
	\end{figure}

\end{frame}


\begin{frame}{CMB radiation in an inhomogeneous spherical space}

	\begin{itemize}
		\item Manifolds of the form $\mathbb S/\Gamma$ with $\Gamma$ a group acting on $\mathbb S^3$.
		\item Multi-connected space: it has non-contractable loops
		\item Inhomogeneous space: it does not look identical from every point in space
		\item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence:
		      \begin{enumerate}
			      \item homogeneous: $N3$ and $L(8,1)$
			      \item inhomogeneous: $N2 \equiv L(8,3)$
		      \end{enumerate}
		\item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because observer dependency changes the suppression of CMB anisotropies.
	\end{itemize}


\end{frame}

\section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}

\begin{frame}{The setup}
	From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. \\
	So, $\Delta T(\hat{n})$ expanded using \textit{spherical harmonics}, with $a_{\ell m}$ its coefficients.\\
	We assume the fluctuations:
	\begin{itemize}
		\item Statistically isotropic and homogeneous in the mean.
		\item Gaussian distribution.
		\item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables.
	\end{itemize}
	Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$ \\

	\textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
\end{frame}

\begin{frame}{The setup}
	Real CMB observations are affected by instrumental noise and \textit{sky masking}. So, estimating $C_\ell$ accurately requires simulations.

	Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky
	\[
		\textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}).
	\]
	However, this introduces bias, which must be corrected using a decorrelation matrix  $W$, and a \textit{sky mask} matrix  $M$ which accounts for issues caused by masking effects.

	Giving us the test statistic (tests the assumption of statistical isotropy):
	\[
		S_i = \sum_{j} W_{ij} M_j,
	\]
	Which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges. \\
	\textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}

\end{frame}

\begin{frame}{The Results}
	\begin{figure} [h!]
		\centering
		\includegraphics[width=0.7\linewidth]{DSE-Test Graph}
		\caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].}
	\end{figure}
	\textcolor{red}{Remark}In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum.

\end{frame}

\section{Conclusion}
\begin{frame}{Conclusion}
	akbbfbsKJBKJBLJs
\end{frame}

\begin{frame}{To summerize}
	egqgaaf
	\begin{itemize}
		\item 1
		\item 2
		\item 3
	\end{itemize}

\end{frame}

\section{References}
\begin{frame}{References}
	\begin{itemize}
		\item R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011.
		\item R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012.
		\item  R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005.
		\item P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004.
		\item G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html.
	\end{itemize}
\end{frame}


\begin{frame}{References}
	\begin{itemize}

		\item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011.
		\item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996.
		\item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980.
		\item D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012.
		\item P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013.
	\end{itemize}
\end{frame}

\begin{frame}{References}
	\begin{itemize}
		\item E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025.
		\item R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002.
		\item M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025.
		\item B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020.
	\end{itemize}
\end{frame}


\begin{frame}{}
	\begin{center}
		\huge Thank You!
	\end{center}
\end{frame}

\end{document}