\section{Prerequisites} \begin{frame}{Manifolds \& Homotopy Groups} \begin{figure}[H] \centering \includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png} \caption{The prototypical example of a manifold a mug [13].} \label{fig:mug-neighbourhoods} \end{figure} \pause \begin{figure}[H] \centering %$ \captionsetup{width=.75\linewidth} \includegraphics[width=0.2\linewidth]{Contractible loops.png} \caption{Two double tori with (non)-contractible paths [7].} \label{fig:CoLoop} \end{figure} \end{frame} \begin{frame}{Quotients of the $3$-sphere} \begin{itemize} \item $\so 4$ is isomorphic to the isometry group of $\S^3$. \item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$. \pause \item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$. \item This can be easily generalized to the $n$-sphere. \end{itemize} \end{frame} \begin{frame}{Lens Spaces} \begin{itemize} \item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group. \item They cannot be distinguished by their homotopy group alone. \end{itemize} \end{frame} \begin{frame}{Lens Spaces — the Explicit Construction} \begin{definition}[Lens space] Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$ \begin{align*} \lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle, \end{align*} where $\langle M_{q,s} \rangle$ is the group generated by \begin{align*} M_{q,s} \coloneq \begin{pmatrix} \rotmat{2 \pi s_1 / q} & & & \\ & \rotmat{2 \pi s_2 / q} & & \\ & & \ddots & \\ & & & \rotmat{2 \pi s_n / q} \end{pmatrix}. \end{align*} \end{definition} \pause In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$. \end{frame}