1
Fork 0
bachelor-prep-presentation/prerequisites.tex
Bela Gabriel Schneider 0a99b4e333 Update on Overleaf.
2025-03-21 11:50:16 +00:00

54 lines
2.1 KiB
TeX

\section{Prerequisites}
\begin{frame}{Manifolds \& Homotopy groups}
\begin{figure}[H]
\centering
\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
\caption{The prototypical example of a manifold a mug [13].}
\label{fig:mug-neighbourhoods}
\end{figure}
\begin{figure}[H]
\centering
%$ \captionsetup{width=.75\linewidth}
\includegraphics[width=0.2\linewidth]{Contractible loops.png}
\caption{Two double tori with (non)-contractible paths [7].}
\label{fig:CoLoop}
\end{figure}
\end{frame}
\begin{frame}{Quotients of the $3$-sphere}
\begin{itemize}
\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^3$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
\item This can be easily generalised to the $n$-sphere.
\end{itemize}
\end{frame}
\begin{frame}{Lens spaces}
\begin{itemize}
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
\item They cannot be distinguished by their homotopy group alone.
\end{itemize}
\end{frame}
\begin{frame}{Lens spaces — the explicit construction}
\begin{definition}[Lens space]
Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$
\begin{align*}
\lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle,
\end{align*}
where $\langle M_{q,s} \rangle$ is the group generated by
\begin{align*}
M_{q,s} \coloneq
\begin{pmatrix}
\rotmat{2 \pi s_1 / q} & & & \\
& \rotmat{2 \pi s_2 / q} & & \\
& & \ddots & \\
& & & \rotmat{2 \pi s_n / q}
\end{pmatrix}
\end{align*}
\end{definition}
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
\end{frame}