1
Fork 0
bachelor-prep-presentation/main.tex
2025-03-20 18:26:18 +01:00

249 lines
9.3 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass{beamer}
\usetheme{Warsaw}
\usecolortheme{lily}
% boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works
\usepackage{graphicx} % Required for inserting images
\usepackage{caption}
\usepackage{subcaption}
\usepackage{tikz}
\usepackage{pgfplots}
\usepackage{verbatim}
\usepackage{mathtools}
\pgfplotsset{compat = newest}
\usetikzlibrary{matrix}
\usepackage[dvipsnames]{xcolor}
\usetikzlibrary{perspective}
\DeclareMathOperator{\divergence}{div}
\DeclareMathOperator{\lensop}{L}
\DeclareMathOperator{\rotmatop}{R}
\DeclareMathOperator{\soop}{SO}
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
\newcommand*{\so}[1]{\soop\left(#1\right)}
\newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\R}{\mathbb{R}}
% cool color
\usepackage{xcolor}
\usepackage{nicematrix}
\NiceMatrixOptions{
code-for-first-row = \color{red} ,
code-for-last-row = \color{blue} ,
code-for-first-col = \color{blue} ,
code-for-last-col = \color{blue}
}
\title{Computing CMB temperature fluctuations for spherical spaces}
\author{Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar}
%\institute{Presenting: Javier, Juš}
\date{March 24, 2025}
\DeclareMathOperator{\cl}{cl}
\DeclareMathOperator{\rank}{r}
% Define custom headline
\setbeamertemplate{headline}{%
\leavevmode%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}%
\mbox{}\hspace{.5em}\strut\insertsectionhead\hfill%
\end{beamercolorbox}%
}
\setbeamercolor{block title}{fg=white, bg=purple!50!black}
\setbeamercolor{block body}{fg=black, bg=pink!20}
\setbeamercolor{titlebox}{fg=black,bg=white}
\begin{document}
\section{Introduction}
{
\usebackgroundtemplate{\includegraphics[height=\paperheight]{cmb.png}}
\begin{frame}
\begin{beamercolorbox}[center]{titlebox}%
\titlepage
\end{beamercolorbox}
\end{frame}
}
\include{prerequisites}
\include{isospectral}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
\begin{itemize}
\item The Helmholtz equation on $\textcolor{blue}{M}$ has the spectrum as its solutions, and is given by
\begin{align*}
(\Delta + E_{\textcolor{red}{\beta}}^{\textcolor{blue}{M}})\psi_{\textcolor{red}{\beta}}^{{\textcolor{blue}{M}}, i} = 0.
\end{align*}
\item In fact $E_{\textcolor{red}{\beta}}^m = {\textcolor{red}{\beta}}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number.
\item The set of all possible wave numbers [for which there exists a non-zero solution] depends on $\Gamma$.
\item Solutions to the Helmholtz equation are calculated for each $\Gamma$ and CMB anisotropy $\frac{\delta T}{T}$ computed.
\end{itemize}
\end{frame}
\begin{comment}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
\begin{itemize}
\item If $H = \{1\}$ the set of wave numbers is $\mathbb{N}$
\item If $H = \mathbb Z/m\mathbb Z$ for odd $m$ the set of wave numbers is $$\{1,3,\cdots, m\}\cup \{m+1, m+2, m+3, \cdots \}.$$
\item If $H = O^*$, the binary tetrahedral group --- a subgroup of $SO(4)$ of size 24, the set of wave numbers is $$\{ 1,7,9 \} \cup \{13,15,17,\cdots \}.$$
\end{itemize}
\end{frame}
\end{comment}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces — Conclusion}
\begin{itemize}
\item For the majority of groups $\Gamma$, the anisotropies $\frac{\delta T}{T}$ do not coincide with observations.
\item The only groups for which it does are $\Gamma = O^*$ and $\Gamma = I^*$ — the \textcolor{red}{binary octahedral} and \textcolor{red}{binary icosahedral} groups of order 48 and 120 respectively.
\end{itemize}
\begin{figure}[H]
\centering
\includegraphics[width=0.35\linewidth]{binary-octahedron.png}
\caption{Graphical representation of the binary tetrahedral group
[5]}
\end{figure}
\end{frame}
\section{CMB radiation in an inhomogeneous spherical space}
\begin{frame}{Inhomogeneous spherical space}
\begin{itemize}
\item Manifolds of the form $\S^3/\Gamma$ with $\Gamma$ a group acting on $\S^3$.
\item Multi-connected space: it has non-contractable loops
\item Inhomogeneous space: it does not look identical from every point in space
\item Fixing $|\Gamma|=8$, we have three multi-connected manifolds, up to equivalence:
\begin{enumerate}
\item homogeneous: $N3$ and $L(8,1)$
\item inhomogeneous: $N2 \equiv L(8,3)$
\end{enumerate}
\item Results: inhomogeneous spaces have more variety in CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is observer dependent.
\end{itemize}
\end{frame}
\section{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}
\begin{frame}{The setup}
From the perspective of an Earth-based observer, we can view CMB as a function defined on the celestial sphere $\mathbb{S}^2$. We expand $\Delta T(\hat{n})$ using \emph{spherical harmonics}, yielding coefficients $a_{\ell m}$.
We assume the fluctuations:
\begin{itemize}
\item Statistically isotropic and homogeneous in the mean.
\item Gaussian distribution.
\item $\textcolor{blue}{a_{\ell m}}$ are independent Gaussian variables.
\end{itemize}
Coefficients should satisfy:$\langle \textcolor{blue}{a_{\ell m}} \rangle = 0$.
\textbf{\textcolor{red}{Remark:}} $\langle \textcolor{blue}{a_{\ell m}} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
\end{frame}
\begin{frame}{The setup}
Real CMB observations are affected by instrumental noise and \emph{sky masking}. As a result, estimating $C_\ell$ accurately requires simulations.
Given $C^{th}_\ell$, used to generate synthetic realizations of the CMB sky
\[
\textcolor{blue}{a_{\ell m}} \sim \mathcal{N} (0, C_\ell^{\text{th}}).
\]
Unfortunately, this introduces bias, which must be corrected using a decorrelation matrix $W$, and a \textit{sky mask} matrix $M$ which accounts for issues caused by masking effects. This gives us the test statistic (tests the assumption of statistical isotropy):
\[
S_i = \sum_{j} W_{ij} M_j,
\]
which examines $\langle \textcolor{blue}{a_{\ell m}} \rangle$ across multipole ranges.
\textbf{\textcolor{red}{Recall:}} $\langle a_{\ell m} \rangle \neq 0$, \textbf{suggests possible anisotropies or preferred directions in the universe}
\end{frame}
\begin{frame}{The Results}
\begin{figure} [h!]
\centering
\includegraphics[width=0.7\linewidth]{DSE-Test Graph}
\caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].}
\end{figure}
\textcolor{red}{Remark}: In a positively curved space certain multipoles scales being preferred or suppressed in the CMB power spectrum.
\end{frame}
\section{Conclusion}
\begin{frame}{Conclusion}
akbbfbsKJBKJBLJs
\end{frame}
\begin{frame}{To summerize}
egqgaaf
\begin{itemize}
\item 1
\item 2
\item 3
\end{itemize}
\end{frame}
\section{References}
\begin{frame}{References}
\begin{itemize}
\item R. Aurich, P. Kramer, and S. Lustig. \textit{Cosmic microwave background radiation in an inhomogeneous spherical space}. Physica Scripta, 2011.
\item R. Aurich, P. Kramer, and S. Lustig. \textit{A survey of lens spaces and large-scale CMB anisotropy}. Monthly Notices of the Royal Astronomical Society, 2012.
\item R. Aurich, S. Lustig, and F. Steiner. \textit{CMB anisotropy of spherical spaces}. Classical and Quantum Gravity, 2005.
\item P. Bielewicz, K. M. G´orski, and A. J. Banday. \textit{Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP}. Oxford University Press, 2004.
\item G. Egan. \textit{Symmetries and the 24-cell}. 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html.
\end{itemize}
\end{frame}
\begin{frame}{References}
\begin{itemize}
\item N. Jarosik et. al. \textit{Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results}. The American Astronomical Society, 2011.
\item M. Herlihy and N. Shavit. \textit{The Topological Structure of Asynchronous Computability}. Journal of the ACM, 1996.
\item A. Ikeda. \textit{On the spectrum of a Riemannian manifold of positive constant curvature}. Osaka Journal of Mathematics, 1980.
\item D. Kashino, K. Ichiki, and T. Takeuchi. \textit{Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}. Physics Review, 2012.
\item P. Labrana. \textit{Emergent Universe Scenario and the Low CMB Multipoles}. Physical Review, 2013.
\end{itemize}
\end{frame}
\begin{frame}{References}
\begin{itemize}
\item E. A. Lauret and B. Linowitz. \textit{The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems}. New York Journal of Mathematics, 2025.
\item R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit{Eigenmodes of three-dimensional spherical spaces and their application to cosmology}. Classical and Quantum Gravity, 2002.
\item M. Serri. \textit{Analysis on Manifolds}. AMS Open Math Notes, 2025.
\item B. Tai-Dana, T. Bryson, and J. Terilla. \textit{Topology, a categorical approach}. The MIT Press, 2020.
\end{itemize}
\end{frame}
\begin{frame}{}
\begin{figure}[H]
\centering
\includegraphics[width=.4\paperwidth]{qrcode.png}
\end{figure}
\begin{center}
\huge Thank You!
\end{center}
\end{frame}
\end{document}