198 lines
4.6 KiB
JavaScript
198 lines
4.6 KiB
JavaScript
|
function population(game){
|
||
|
this.max = 50;
|
||
|
this.top = 4;
|
||
|
this.game = game;
|
||
|
|
||
|
if (this.max < this.top){
|
||
|
this.top = this.max;
|
||
|
}
|
||
|
|
||
|
this.Population = [];
|
||
|
this.scale = 200;
|
||
|
|
||
|
this.reset = function(){
|
||
|
this.iteration = 1;
|
||
|
this.mutateRate = 1;
|
||
|
|
||
|
this.best_population = 0;
|
||
|
this.best_fitness = 0;
|
||
|
this.best_score = 0;
|
||
|
}
|
||
|
|
||
|
this.create_population = function(){
|
||
|
this.Population = [];
|
||
|
|
||
|
for (var i=0; i<this.max; i++){
|
||
|
var newUnit = new synaptic.Architect.Perceptron(5, 32, 4);
|
||
|
|
||
|
newUnit.index = i;
|
||
|
newUnit.fitness = 0;
|
||
|
newUnit.score = 0;
|
||
|
newUnit.isWinner = false;
|
||
|
newUnit.x = 250;
|
||
|
newUnit.y = 100;
|
||
|
//newUnit.round = 0;
|
||
|
|
||
|
this.Population.push(newUnit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
this.think = function(unit){
|
||
|
var inputs = [500,500,unit.x,unit.y,dist(unit.x,unit.y,500,500)];
|
||
|
var outputs = this.Population[unit.index].activate(inputs);
|
||
|
|
||
|
var max = outputs.indexOf((Math.max.apply( Math,outputs)));
|
||
|
//console.log(Math.max.apply( Math,outputs));
|
||
|
if (max == 0 && unit.y >= 0){
|
||
|
unit.y -= 1;
|
||
|
}
|
||
|
else if (max == 2 && unit.y <= 500){
|
||
|
unit.y += 1;
|
||
|
}
|
||
|
else if (max == 1 && unit.x <= 500){
|
||
|
unit.x += 1;
|
||
|
}
|
||
|
else if (max == 3 && unit.x >= 0){
|
||
|
unit.x -= 1;
|
||
|
}
|
||
|
//unit.round++;
|
||
|
//this.game.draw(unit.x,unit.y);
|
||
|
unit.fitness = dist(unit.x,unit.y,0,0);
|
||
|
//console.log(max+"evolving"+outputs);
|
||
|
}
|
||
|
|
||
|
this.evolve = function(){
|
||
|
var Winners = this.select();
|
||
|
|
||
|
if (this.mutateRate == 1 && Winners[0].fitness < 0){
|
||
|
this.create_population();
|
||
|
}
|
||
|
else{
|
||
|
this.mutateRate = 0.2;
|
||
|
}
|
||
|
|
||
|
|
||
|
for (var i=this.top; i<this.max; i++){
|
||
|
var parentA, parentB, offspring;
|
||
|
|
||
|
if (i == this.top){
|
||
|
parentA = Winners[0].toJSON();
|
||
|
parentB = Winners[1].toJSON();
|
||
|
offspring = this.crossOver(parentA, parentB);
|
||
|
|
||
|
} else if (i < this.max-2){
|
||
|
parentA = this.getRandomUnit(Winners).toJSON();
|
||
|
parentB = this.getRandomUnit(Winners).toJSON();
|
||
|
offspring = this.crossOver(parentA, parentB);
|
||
|
|
||
|
} else {
|
||
|
offspring = this.getRandomUnit(Winners).toJSON();
|
||
|
}
|
||
|
|
||
|
// mutate the offspring
|
||
|
offspring = this.mutation(offspring);
|
||
|
|
||
|
// create a new unit using the neural network from the offspring
|
||
|
var newUnit = synaptic.Network.fromJSON(offspring);
|
||
|
newUnit.index = this.Population[i].index;
|
||
|
newUnit.fitness = 0;
|
||
|
newUnit.score = 0;
|
||
|
newUnit.isWinner = false;
|
||
|
newUnit.x = 250;
|
||
|
newUnit.y = 100;
|
||
|
//newUnit.round = 0;
|
||
|
|
||
|
// update population by changing the old unit with the new one
|
||
|
this.Population[i] = newUnit;
|
||
|
}
|
||
|
|
||
|
this.Population.sort(function(unitA, unitB){
|
||
|
return unitA.index - unitB.index;
|
||
|
});
|
||
|
}
|
||
|
|
||
|
this.select = function(){
|
||
|
var sortedPopulation = this.Population.sort(
|
||
|
function(unitA, unitB){
|
||
|
return unitB.fitness - unitA.fitness;
|
||
|
}
|
||
|
);
|
||
|
|
||
|
for (var i=0; i<this.top; i++){
|
||
|
this.Population[i].isWinner = true;
|
||
|
}
|
||
|
|
||
|
return sortedPopulation.slice(0, this.top);
|
||
|
}
|
||
|
|
||
|
this.crossOver = function(parentA, parentB){
|
||
|
var cutPoint = this.random(0, parentA.neurons.length-1);
|
||
|
|
||
|
for (var i = cutPoint; i < parentA.neurons.length; i++){
|
||
|
var biasFromParentA = parentA.neurons[i]['bias'];
|
||
|
parentA.neurons[i]['bias'] = parentB.neurons[i]['bias'];
|
||
|
parentB.neurons[i]['bias'] = biasFromParentA;
|
||
|
}
|
||
|
|
||
|
cutPoint = this.random(0, parentA.connections.length-1);
|
||
|
|
||
|
for (var i = cutPoint; i < parentA.connections.length; i++){
|
||
|
var weightFromParentA = parentA.connections[i]['weight'];
|
||
|
parentA.connections[i]['weight'] = parentB.connections[i]['weight'];
|
||
|
parentB.connections[i]['weight'] = weightFromParentA;
|
||
|
}
|
||
|
return this.random(0, 1) == 1 ? parentA : parentB;
|
||
|
}
|
||
|
|
||
|
this.mutation = function(offspring){
|
||
|
for (var i = 0; i < offspring.neurons.length; i++){
|
||
|
offspring.neurons[i]['bias'] = this.mutate(offspring.neurons[i]['bias']);
|
||
|
}
|
||
|
|
||
|
for (var i = 0; i < offspring.connections.length; i++){
|
||
|
offspring.connections[i]['weight'] = this.mutate(offspring.connections[i]['weight']);
|
||
|
}
|
||
|
|
||
|
return offspring;
|
||
|
}
|
||
|
|
||
|
this.mutate = function(gene){
|
||
|
if (Math.random() < this.mutateRate) {
|
||
|
var mutateFactor = 1 + ((Math.random() - 0.5) * 3 + (Math.random() - 0.5));
|
||
|
gene *= mutateFactor;
|
||
|
}
|
||
|
|
||
|
return gene;
|
||
|
}
|
||
|
|
||
|
this.random = function(min, max){
|
||
|
return Math.floor(Math.random()*(max-min+1) + min);
|
||
|
}
|
||
|
|
||
|
this.getRandomUnit = function(array){
|
||
|
return array[this.random(0, array.length-1)];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
function dist(x1,y1,x2,y2){
|
||
|
var x = x2 - x1;
|
||
|
var y = y2 - y1;
|
||
|
return Math.sqrt(Math.pow(x,2) + Math.pow(y,2));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|