2019-01-20 21:13:44 +01:00
|
|
|
const canvas = document.getElementById("canvas");
|
|
|
|
const ctx = canvas.getContext("2d");
|
|
|
|
|
|
|
|
canvas.height = window.innerHeight;
|
|
|
|
canvas.width = window.innerWidth;
|
|
|
|
const w = window.innerWidth;
|
|
|
|
const h = window.innerHeight;
|
|
|
|
|
2019-01-22 14:35:55 +01:00
|
|
|
let points = [];
|
2019-01-20 21:13:44 +01:00
|
|
|
const pointSize = 5;
|
|
|
|
const shuffleProcent = 0.99;
|
|
|
|
|
|
|
|
let pressing = false;
|
|
|
|
let a = 1;
|
|
|
|
let b = 0;
|
|
|
|
let rate = 0.5;
|
|
|
|
|
|
|
|
const sumArrays = (a,c) => [a[0] + c[0],a[1] + c[1]];
|
|
|
|
|
|
|
|
MainLoop.setDraw(() => {
|
|
|
|
ctx.fillStyle = "#000000";
|
|
|
|
ctx.fillRect(0,0,3000,3000);
|
|
|
|
ctx.fillStyle = "#ffffff";
|
|
|
|
for (let i of points){
|
|
|
|
ctx.fillRect(i[0] * w,i[1] * h,pointSize,pointSize);
|
|
|
|
}
|
|
|
|
ctx.strokeStyle = "#8888ff";
|
|
|
|
ctx.beginPath();
|
|
|
|
ctx.moveTo(0,b * h);
|
|
|
|
ctx.lineTo(w,h * a + h * b);
|
|
|
|
ctx.stroke();
|
|
|
|
if (points.length > 1){
|
|
|
|
let good = regression();
|
|
|
|
ctx.strokeStyle = "#22ff55";
|
|
|
|
ctx.beginPath();
|
|
|
|
ctx.moveTo(0,h * good[1]);
|
|
|
|
ctx.lineTo(w,h * good[0] + h * good[1]);
|
|
|
|
ctx.stroke();
|
|
|
|
}
|
|
|
|
}).setUpdate(train).start();
|
|
|
|
|
|
|
|
$(canvas).mousedown((e) => {pressing = true});
|
|
|
|
$(canvas).mouseup((e) => {pressing = false});
|
|
|
|
|
|
|
|
$(canvas).mousemove(e => {
|
|
|
|
if (pressing){
|
|
|
|
points.push([
|
|
|
|
e.clientX/w,
|
|
|
|
e.clientY/h
|
|
|
|
]);
|
|
|
|
}
|
|
|
|
});
|
|
|
|
|
|
|
|
function shuffle(a) {
|
|
|
|
var j, x, i;
|
|
|
|
for (i = a.length - 1; i > 0; i--) {
|
|
|
|
j = Math.floor(Math.random() * (i + 1));
|
|
|
|
x = a[i];
|
|
|
|
a[i] = a[j];
|
|
|
|
a[j] = x;
|
|
|
|
}
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
function train(time){
|
|
|
|
if (Math.random() > shuffleProcent) points = shuffle(points);
|
|
|
|
let lastcost = Math.pow(10,20);
|
|
|
|
if (points.length > 1){
|
|
|
|
for (let i of points){
|
|
|
|
const x = i[0];
|
|
|
|
const y = i[1];
|
|
|
|
|
|
|
|
let guess = a * x + b;
|
|
|
|
let error = y - guess;
|
|
|
|
|
|
|
|
a = a + error * rate * x;
|
|
|
|
b = b + error * rate;
|
|
|
|
|
|
|
|
guess = a * x + b;
|
|
|
|
newerror = y - guess;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
function regression(){
|
|
|
|
const sum = points.reduce(sumArrays);
|
|
|
|
const mean = sum.map(val => val/points.length);
|
|
|
|
|
|
|
|
let den = 0;
|
|
|
|
let num = 0;
|
|
|
|
|
|
|
|
for (let i of points){
|
|
|
|
num += (i[0] - mean[0]) * (i[1] - mean[1]);
|
|
|
|
den += (i[0] - mean[0]) * (i[0] - mean[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
let m = num/den;
|
|
|
|
let n = mean[1] - m * mean[0];
|
|
|
|
|
|
|
|
return [m,n];
|
|
|
|
}
|