121 lines
3.5 KiB
Plaintext
121 lines
3.5 KiB
Plaintext
|
module Canopy.Adjudecate where
|
||
|
|
||
|
import Prelude
|
||
|
|
||
|
import Control.Bind (bind)
|
||
|
import Data.Foldable (class Foldable, any, foldMap, foldlDefault, foldrDefault)
|
||
|
import Data.List (List(..))
|
||
|
import Data.List as List
|
||
|
import Data.Tuple.Nested (type (/\), (/\))
|
||
|
import Partial.Unsafe (unsafeCrashWith)
|
||
|
import Prim.Row (class Cons)
|
||
|
|
||
|
type Index = Int
|
||
|
|
||
|
data Proposition a
|
||
|
= False
|
||
|
| True
|
||
|
| Disj (Proposition a) (Proposition a)
|
||
|
| Conj (Proposition a) (Proposition a)
|
||
|
| Negation (Proposition a)
|
||
|
| Other a
|
||
|
|
||
|
derive instance Functor Proposition
|
||
|
|
||
|
instance Apply Proposition where
|
||
|
apply = ap
|
||
|
|
||
|
instance Applicative Proposition where
|
||
|
pure = Other
|
||
|
|
||
|
instance Bind Proposition where
|
||
|
bind (Other a) f = f a
|
||
|
bind False _ = False
|
||
|
bind True _ = True
|
||
|
bind (Negation p) f = Negation (bind p f)
|
||
|
bind (Conj l r) f = Conj (bind l f) (bind r f)
|
||
|
bind (Disj l r) f = Disj (bind l f) (bind r f)
|
||
|
|
||
|
instance Foldable Proposition where
|
||
|
foldMap f (Other a) = f a
|
||
|
foldMap f (Disj l r) = foldMap f l <> foldMap f r
|
||
|
foldMap f (Conj l r) = foldMap f l <> foldMap f r
|
||
|
foldMap f (Negation p) = foldMap f p
|
||
|
foldMap _ _ = mempty
|
||
|
|
||
|
foldr = foldrDefault
|
||
|
foldl = foldlDefault
|
||
|
|
||
|
instance Monad Proposition
|
||
|
|
||
|
derive instance Eq a => Eq (Proposition a)
|
||
|
|
||
|
simp :: forall a. Eq a => Proposition a -> Proposition a
|
||
|
simp (Conj False _) = False
|
||
|
simp (Conj _ False) = False
|
||
|
simp (Disj True _) = True
|
||
|
simp (Disj _ True) = True
|
||
|
simp (Negation True) = False
|
||
|
simp (Negation False) = True
|
||
|
simp (Negation (Negation p)) = simp p
|
||
|
simp (Conj l r) | l == r = simp l
|
||
|
simp (Disj l r) | l == r = simp l
|
||
|
simp (Negation (Disj l r)) = simp $ Conj (simp $ Negation l) (simp $ Negation r)
|
||
|
simp (Negation (Conj l r)) = simp $ Disj (simp $ Negation l) (simp $ Negation r)
|
||
|
simp (Conj l (Negation r)) | l == r = False
|
||
|
simp (Disj l (Negation r)) | l == r = True
|
||
|
simp (Negation p) = Negation (simp p)
|
||
|
simp (Conj l r) = Conj (simp l) (simp r)
|
||
|
simp (Disj l r) = Disj (simp l) (simp r)
|
||
|
simp o = o
|
||
|
|
||
|
-- Put this inside a proposition to have
|
||
|
-- two wildcard (self and target)
|
||
|
data BinaryWildcard = BSelf | BTarget | BRef Index
|
||
|
|
||
|
-- Put this inside a proposition to have
|
||
|
-- a single wildcard (target)
|
||
|
data UnaryWildcard = UTarget | URef Index
|
||
|
|
||
|
newtype Entry = Entry
|
||
|
-- Expression which must be true for us to also be true.
|
||
|
{ requires :: Proposition Index
|
||
|
|
||
|
-- We can add arbitrary logic to entries already in the graph
|
||
|
, contributes :: List (Proposition BinaryWildcard)
|
||
|
}
|
||
|
|
||
|
data MoveImplications
|
||
|
= Empty
|
||
|
| AddEntry Entry MoveImplications
|
||
|
|
||
|
referencesSelf :: Proposition UnaryWildcard -> Boolean
|
||
|
referencesSelf = any case _ of
|
||
|
URef 0 -> true
|
||
|
_ -> false
|
||
|
|
||
|
applyContributions :: List (Proposition UnaryWildcard) -> MoveImplications -> MoveImplications
|
||
|
applyContributions Nil Empty = Empty
|
||
|
applyContributions (Cons contribution rest) (AddEntry entry implications) = AddEntry entry' (applyContributions rest implications')
|
||
|
where
|
||
|
entry' = ?e
|
||
|
implications' = ?i
|
||
|
|
||
|
contributions = implications # List.partition referencesSelf
|
||
|
|
||
|
applyContributions _ _ = unsafeCrashWith "Different amounts of contributions and implications"
|
||
|
|
||
|
|
||
|
resolveMoveImplications :: MoveImplications -> List Boolean
|
||
|
resolveMoveImplications Empty = List.Nil
|
||
|
resolveMoveImplications (AddEntry (Entry { requires, contributes }) implications) =
|
||
|
?w
|
||
|
where
|
||
|
unaryContributions :: List (Proposition UnaryWildcard)
|
||
|
unaryContributions = contributes <#> \proposition -> do
|
||
|
wildcard <- proposition
|
||
|
case wildcard of
|
||
|
BTarget -> pure UTarget
|
||
|
BRef i -> pure $ URef i
|
||
|
BSelf -> map URef requires
|