1
Fork 0

feat: basic constraint solving

This commit is contained in:
Matei Adriel 2021-04-01 19:29:27 +03:00
commit 3f5d49190f
10 changed files with 490 additions and 0 deletions

View file

@ -0,0 +1,10 @@
/bower_components/
/node_modules/
/.pulp-cache/
/output/
/generated-docs/
/.psc-package/
/.psc*
/.purs*
/.psa*
/.spago

View file

@ -0,0 +1,27 @@
let upstream =
https://github.com/purescript/package-sets/releases/download/psc-0.14.0-20210324/packages.dhall sha256:b4564d575da6aed1c042ca7936da97c8b7a29473b63f4515f09bb95fae8dddab
let additions =
{ debugged =
{ dependencies =
[ "prelude"
, "console"
, "ordered-collections"
, "either"
, "tuples"
, "lists"
, "strings"
, "arrays"
, "bifunctors"
, "record"
, "effect"
, "datetime"
, "enums"
, "unordered-collections"
]
, repo = "https://github.com/hdgarrood/purescript-debugged"
, version = "master"
}
}
in upstream // additions

View file

@ -0,0 +1,19 @@
{-
Welcome to a Spago project!
You can edit this file as you like.
-}
{ name = "my-project"
, dependencies =
[ "console"
, "debug"
, "effect"
, "filterable"
, "profunctor-lenses"
, "psci-support"
, "run"
, "strings"
, "unordered-collections"
]
, packages = ./packages.dhall
, sources = [ "src/**/*.purs", "test/**/*.purs" ]
}

View file

@ -0,0 +1,62 @@
module Functorio.Lens where
import Prelude
import Data.HashMap (HashMap)
import Data.HashMap as H
import Data.HashSet (HashSet)
import Data.HashSet as S
import Data.Hashable (class Hashable)
import Data.Lens (AGetter, Fold, Iso', Lens', Setter, iso, lens, over, preview, set, view)
import Data.Maybe (Maybe(..), maybe')
import Data.Maybe.First (First)
import Run (Run)
import Run.Reader (READER, ask)
import Run.State (STATE, get, modify)
---------- Missing instances
atHashMap :: forall k v. Hashable k => k -> Lens' (HashMap k v) (Maybe v)
atHashMap k =
lens (H.lookup k) \m ->
maybe' (\_ -> H.delete k m) \v -> H.insert k v m
-- | At implementation for hash sets
atHashSetRaw :: forall v. Hashable v => v -> Lens' (HashSet v) (Maybe Unit)
atHashSetRaw x = lens get (flip update)
where
get xs =
if S.member x xs
then Just unit
else Nothing
update Nothing = S.delete x
update (Just _) = S.insert x
-- | Boolean implementation for AT on hash sets
atHashSet :: forall v. Hashable v => v -> Lens' (HashSet v) Boolean
atHashSet v = atHashSetRaw v <<< maybeUnitToBoolean
-- | Helper fro implementing atHashSet'
maybeUnitToBoolean :: Iso' (Maybe Unit) Boolean
maybeUnitToBoolean = iso to from
where
from true = Just unit
from false = Nothing
to Nothing = false
to _ = true
--------- Helpers for monadic state
getAt :: forall s t a b r. AGetter s t a b -> Run (STATE s r) a
getAt optic = view optic <$> get
getPreview :: forall r s t a b. Fold (First a) s t a b -> Run (STATE s r) (Maybe a)
getPreview optic = preview optic <$> get
setAt :: forall s a b r. Setter s s a b -> b -> Run (STATE s r) Unit
setAt optic value = set optic value # modify
modifyAt :: forall s a b r. Setter s s a b -> (a -> b) -> Run (STATE s r) Unit
modifyAt optic f = over optic f # modify
askAt :: forall s t a b r. AGetter s t a b -> Run (READER s r) a
askAt optic = ask <#> view optic

View file

@ -0,0 +1,40 @@
module Main where
import Prelude
import Data.Compactable (compact)
import Data.Either (Either(..))
import Data.Foldable (for_)
import Data.HashMap as HashMap
import Data.String (joinWith)
import Data.Tuple (Tuple(..))
import Data.Tuple.Nested ((/\))
import Effect (Effect)
import Effect.Class.Console (logShow)
import Effect.Console (log)
import RealFunction (PortSide(..), RealFunction, SolveM, _constraints, collectConstraints, myFactory, runSolveM, tryFindBound)
import Run.Except (runFail)
import Run.Reader.Extra (fromState')
p :: SolveM (Array RealFunction)
p = do
collectConstraints
a <- fromState' _constraints $ runFail $ tryFindBound (0 /\ Input)
b <- fromState' _constraints $ runFail $ tryFindBound (0 /\ Output)
c <- fromState' _constraints $ runFail $ tryFindBound (1 /\ Input)
d <- fromState' _constraints $ runFail $ tryFindBound (1 /\ Output)
e <- fromState' _constraints $ runFail $ tryFindBound (2 /\ Input)
f <- fromState' _constraints $ runFail $ tryFindBound (2 /\ Output)
g <- fromState' _constraints $ runFail $ tryFindBound (4 /\ Input)
h <- fromState' _constraints $ runFail $ tryFindBound (4 /\ Output)
pure $ compact [a, b, c, d, e, f, g, h]
main :: Effect Unit
main = do
for_ (HashMap.toArrayBy Tuple myFactory) \(Tuple key value) -> log $ show key <> ": " <> show value
case runSolveM myFactory p of
Left err -> log err
Right (Tuple s f) -> do
log $ joinWith "\n" $ show <$> s.constraints
logShow $ f <*> pure 0.0

View file

@ -0,0 +1,12 @@
module Run.Fail.Extra where
import Prelude
import Data.Compactable (class Compactable, compact)
import Data.Traversable (class Traversable, traverse)
import Run (Run)
import Run.Except (FAIL, runFail)
-- | `Compact` / `MapMaybe` usnig the `Fail` ability
traverseFail :: forall r t a b. Compactable t => Traversable t => (a -> Run (FAIL r) b) -> t a -> Run r (t b)
traverseFail f = traverse (f >>> runFail) >>> map compact

View file

@ -0,0 +1,18 @@
module Run.Reader.Extra where
import Prelude
import Data.Lens (AGetter)
import Functorio.Lens (getAt)
import Run (Run)
import Run.Reader (READER, runReader)
import Run.State (STATE, get)
import Type.Row (type (+))
-- | Use state from the environemtn to eliminate a reader monad.
fromState :: forall r s a. Run (STATE s + READER s r) a -> Run (STATE s r) a
fromState m = get >>= flip runReader m
-- | Focus on some state in the environemtn to eliminate a reader monad.
fromState' :: forall s t a b r x. AGetter s t a b -> Run (STATE s + READER a r) x -> Run (STATE s r) x
fromState' optic m = getAt optic >>= flip runReader m

View file

@ -0,0 +1,35 @@
-- | Allows the programmer to limit a monad to only run once (using a key)
module Visited (VISITED, runVisited, once) where
import Prelude
import Data.HashSet (HashSet)
import Data.HashSet as HashSet
import Data.Hashable (class Hashable)
import Run (Run)
import Run.State (State, evalStateAt, getAt, modifyAt)
import Type.Proxy (Proxy(..))
-- | Monad keeping track of all the runned monad' keys
type VISITED a r = ( visited :: State (HashSet a) | r )
-- | Eliminate the Visited effect
runVisited :: forall d a r. Hashable d => Run (VISITED d r) a -> Run r a
runVisited = evalStateAt _visited mempty
-- | Mark a key as visited
visit :: forall a r. Hashable a => a -> Run (VISITED a r) Unit
visit e = modifyAt _visited $ HashSet.insert e
-- | Condition a monad to only run once.
-- | The first argument is a key,
-- | and the second is a default value to use when the monad has already run.
once :: forall d a r. Hashable d => d -> Run (VISITED d r) a -> Run (VISITED d r) a -> Run (VISITED d r) a
once at default m = do
visited <- getAt _visited
if HashSet.member at visited
then default
else visit at *> m
_visited :: Proxy "visited"
_visited = Proxy

View file

@ -0,0 +1,256 @@
module RealFunction where
import Prelude
import Data.Array (length, mapWithIndex)
import Data.Array as Array
import Data.Either (Either)
import Data.Foldable (for_, minimum)
import Data.FoldableWithIndex (forWithIndex_)
import Data.Generic.Rep (class Generic)
import Data.HashMap (HashMap)
import Data.HashMap as HashMap
import Data.HashMap as Map
import Data.Int (toNumber)
import Data.Lens (Lens')
import Data.Lens.Record (prop)
import Data.List (List(..), (:))
import Data.List as List
import Data.Maybe (Maybe(..), fromJust, fromMaybe)
import Data.Number (infinity)
import Data.Show.Generic (genericShow)
import Data.Traversable (for)
import Data.Tuple (Tuple(..), uncurry)
import Data.Tuple.Nested (type (/\), (/\))
import Functorio.Lens (getAt, modifyAt)
import Partial.Unsafe (unsafeCrashWith, unsafePartial)
import Run (Run, extract)
import Run.Except (EXCEPT, fail, runExcept)
import Run.Fail.Extra (traverseFail)
import Run.Reader (READER, ask, runReader)
import Run.State (STATE, runState)
import Type.Proxy (Proxy(..))
import Type.Row (type (+))
import Visited (VISITED, once, runVisited)
type RealFunction = Number -> Number
type BeltConfig =
{ speed :: Number
, delay :: Number }
type ChestConfig =
{ maxContent :: Number
, delay :: Number }
type PortId = Int
type MachineId = Int
data PortSide = Input | Output
data Machine
= Belt { input :: PortId, output :: PortId, config :: BeltConfig }
| Chest { inputs :: Array PortId, outputs :: Array PortId, config :: ChestConfig }
| Provider (Array PortId) RealFunction
| Consumer PortId
type Factory = HashMap MachineId Machine
---------- Some configs
yellowBelt :: BeltConfig
yellowBelt = { speed: 15.0, delay: 1.0/3.0 }
redBelt :: BeltConfig
redBelt = { speed: 30.0, delay: 1.0/6.0 }
blueBelt :: BeltConfig
blueBelt = { speed: 45.0, delay: 1.0/8.0 }
-- | Example factory
myFactory :: Factory
myFactory = Map.fromArray machines
where
machines = mapWithIndex Tuple
[ Provider [0, 1, 2] $ const 80.0
, Belt { input: 0, output: 3, config: yellowBelt }
, Belt { input: 1, output: 4, config: redBelt }
, Belt { input: 2, output: 5, config: blueBelt }
, Consumer 3
, Consumer 4
, Consumer 5
]
---------- Monad for factory solving
type PortData =
{ id :: PortId
, maxInput :: Number -> Number
, maxOutput :: Number -> Number }
data ConstraintExpression
= PortDependent (Array PortId) (Array PortData -> RealFunction)
| Function RealFunction
| Literal Number
type BiRelationship =
{ p1top2 :: RealFunction
, p2top1 :: RealFunction
, p1 :: PortId /\ PortSide
, p2 :: PortId /\ PortSide }
type BiRelationshipId = Int
data ThroughputConstraint
= Limit ConstraintExpression PortSide PortId
| BiRelationship BiRelationshipId BiRelationship
type Constraints = Array ThroughputConstraint
type SolveState =
{ constraints :: Constraints
, lastId :: Int }
type SolveM = Run
( EXCEPT String
+ STATE SolveState
+ READER Factory
+ () )
runSolveM :: forall a. Factory -> SolveM a -> Either String (Tuple SolveState a)
runSolveM factory = runReader factory >>> runState initialState >>> runExcept >>> extract
initialState :: SolveState
initialState = { constraints: [], lastId: 0 }
focusBiRelationship :: PortId /\ PortSide -> BiRelationship -> Maybe BiRelationship
focusBiRelationship place relationship | relationship.p1 == place = Just relationship
| relationship.p2 == place = Just $ flipBiRelationship relationship
| otherwise = Nothing
flipBiRelationship :: BiRelationship -> BiRelationship
flipBiRelationship { p1, p2, p1top2, p2top1 } = { p1: p2, p2: p1, p1top2: p2top1, p2top1: p1top2 }
---------- System solving algorithm
constrain :: ThroughputConstraint -> SolveM Unit
constrain constraint = modifyAt _constraints $ push constraint
where
push = flip Array.snoc
getId :: SolveM Int
getId = modifyAt _lastId ((+) 1) *> getAt _lastId
collectConstraints :: SolveM Unit
collectConstraints = do
factory <- ask
for_ (HashMap.toArrayBy (/\) $ factory) $ uncurry collectConstraintsImpl
getPortData :: forall r. PortId -> Run (READER Constraints r) PortData
getPortData id = ado
maxInput <- tryFindBound $ id /\ Input
maxOutput <- tryFindBound $ id /\ Output
in { id, maxInput, maxOutput }
evalExpr :: forall r. ConstraintExpression -> Run (READER Constraints r) RealFunction
evalExpr = case _ of
Literal a -> pure (const a)
Function f -> pure f
PortDependent portIds f -> for portIds getPortData <#> f
tryFindBound :: forall r. PortId /\ PortSide -> Run (READER Constraints r) RealFunction
tryFindBound at = tryFindBoundImpl at <#> \f time -> extract $ runVisited $ f time
tryFindBoundImpl :: forall r k.
PortId /\ PortSide ->
Run (READER Constraints r) (Number -> Run (VISITED BiRelationshipId k) Number)
tryFindBoundImpl (targetId /\ targetSide) = do
constraints <- ask
pure \time -> constraints
# traverseFail case _ of
Limit expr side id | side == targetSide && id == targetId ->
evalExpr expr <*> pure time
BiRelationship id raw
| Just relationship <- focusBiRelationship (targetId /\ targetSide) raw -> do
f <- once id fail $ tryFindBoundImpl relationship.p2
f (relationship.p1top2 time)
_ -> fail
# runReader constraints
<#> minimum'
where
minimum' = minimum >>> fromMaybe infinity
collectConstraintsImpl :: MachineId -> Machine -> SolveM Unit
collectConstraintsImpl at = case _ of
Provider for amount -> do
forWithIndex_ for \index id -> do
let limit ports time
= outputs ports time
# Array.findMap (\(id' /\ f) -> if id == id' then Just (f time) else Nothing)
# unsafePartial fromJust -- TODO: error handling
constrain $ Limit (PortDependent for limit) Input id
where
outputs :: Array PortData -> Number -> Array (PortId /\ RealFunction)
outputs ports time
= outputsImpl (length ports) (List.fromFoldable sorted) amount
# Array.fromFoldable
# Array.zipWith (_.id >>> Tuple) sorted
where
sorted :: Array PortData
sorted = Array.sortWith (_.maxOutput >>> (#) time) ports
outputsImpl :: Int -> List PortData -> RealFunction -> List RealFunction
outputsImpl 1 (head:Nil) remaining = pure \time -> min (head.maxOutput time) (remaining time)
outputsImpl n (head:tail) remaining = current:(outputsImpl (n - 1) tail $ remaining - current)
where
current time
| head.maxOutput time >= (remaining time) / (toNumber n) = (remaining time) / (toNumber n)
| otherwise = head.maxOutput time
outputsImpl _ _ _ = Nil
Consumer for -> pure unit
Belt { input, output, config } -> do
biId <- getId
constrain $ BiRelationship biId
{ p1: input /\ Output
, p2: output /\ Input
, p1top2: (+) config.delay
, p2top1: (+) (-config.delay) }
constrain $ Limit (Literal config.speed) Output input
constrain $ Limit (Literal config.speed) Input output
_ -> unsafeCrashWith "unimplemented"
---------- Lenses
_lastId :: Lens' SolveState Int
_lastId = prop (Proxy :: _ "lastId")
_constraints :: Lens' SolveState (Array ThroughputConstraint)
_constraints = prop (Proxy :: _ "constraints")
---------- Typeclass instances
derive instance genericMachine :: Generic Machine _
derive instance genericPortSide :: Generic PortSide _
derive instance eqPortSide :: Eq PortSide
instance showMachine :: Show Machine where
show = case _ of
Provider for _ -> "Provider<" <> show for <> ">"
Consumer for -> "Consumer<" <> show for <> ">"
Belt { config, input, output } -> "Belt<" <> show input <> " -> " <> show output <> ", " <> show config <> ">"
Chest { inputs, outputs, config } -> "Chest<" <> show inputs <> " -> " <> show outputs <> ", " <> show config <> ">"
instance showConstraint :: Show ThroughputConstraint where
show = case _ of
Limit f side id -> show f <> " !> " <> showPort (id /\ side)
BiRelationship _ { p1, p2 } -> showPort p1 <> " <-> " <> showPort p2
where
showPort (p /\ side) = "?" <> show p <> case side of
Input -> "<-"
Output -> "<-"
instance showConstraintExpression :: Show ConstraintExpression where
show (Literal i) = show i
show (Function f) = "<Function>"
show (PortDependent ids f) = "(" <> show ids <> " -> <Function>)"
instance showPortSide :: Show PortSide where
show = genericShow

View file

@ -0,0 +1,11 @@
module Test.Main where
import Prelude
import Effect (Effect)
import Effect.Class.Console (log)
main :: Effect Unit
main = do
log "🍝"
log "You should add some tests."