1
Fork 0

python(denoising): Copied files over

Signed-off-by: prescientmoon <git@moonythm.dev>
This commit is contained in:
Matei Adriel 2023-03-28 01:04:30 +02:00 committed by prescientmoon
parent 53c1af07ef
commit 8384e125b5
Signed by: prescientmoon
SSH key fingerprint: SHA256:UUF9JT2s8Xfyv76b8ZuVL7XrmimH4o49p4b+iexbVH4
7 changed files with 524 additions and 0 deletions

4
python/denoising/.gitignore vendored Normal file
View file

@ -0,0 +1,4 @@
.direnv
.ipynb_checkpoints
.envrc
.pyc

278
python/denoising/Main.ipynb Normal file

File diff suppressed because one or more lines are too long

Binary file not shown.

View file

@ -0,0 +1,43 @@
{
"nodes": {
"flake-utils": {
"locked": {
"lastModified": 1676283394,
"narHash": "sha256-XX2f9c3iySLCw54rJ/CZs+ZK6IQy7GXNY4nSOyu2QG4=",
"owner": "numtide",
"repo": "flake-utils",
"rev": "3db36a8b464d0c4532ba1c7dda728f4576d6d073",
"type": "github"
},
"original": {
"owner": "numtide",
"repo": "flake-utils",
"type": "github"
}
},
"nixpkgs": {
"locked": {
"lastModified": 1676428076,
"narHash": "sha256-8caqXsVSUvZqp4/pOLjbWWabzLEV/ZfDUiEv32WumKw=",
"owner": "nixos",
"repo": "nixpkgs",
"rev": "e0a054002198445ef987b55c34cde892cecc0de7",
"type": "github"
},
"original": {
"owner": "nixos",
"ref": "release-22.11",
"repo": "nixpkgs",
"type": "github"
}
},
"root": {
"inputs": {
"flake-utils": "flake-utils",
"nixpkgs": "nixpkgs"
}
}
},
"root": "root",
"version": 7
}

View file

@ -0,0 +1,23 @@
{
inputs = {
nixpkgs.url = "github:nixos/nixpkgs/release-22.11";
flake-utils.url = "github:numtide/flake-utils";
};
outputs = { self, nixpkgs, flake-utils }:
flake-utils.lib.eachDefaultSystem
(system:
let
pkgs = nixpkgs.legacyPackages.${system};
pyDeps = p: with p; [ numpy scipy matplotlib ];
in
rec {
devShell = pkgs.mkShell {
buildInputs = with pkgs; [
(python3.withPackages pyDeps)
jupyter
pandoc
];
};
});
}

View file

@ -0,0 +1,44 @@
import numpy as np
def decompose(M):
n = len(M)
U = M.copy()
L = np.identity(n)
for i in range(0, n - 1):
for j in range(i + 1, n):
L[j, i] = U[j, i] / U[i, i]
U[j, i:n] -= L[j, i] * U[i, i:n]
assert np.allclose(M, L@U)
return L, U
def solve_lower(m, v):
x = np.zeros(len(v))
for i in range(0, len(v)):
x[i] = (v[i] - m[i, :i] @ x[:i]) / m[i, i]
assert np.allclose(m@x, v)
return x
def solve_upper(m, v):
x = np.zeros(len(v))
for i in reversed(range(0, len(m))):
x[i] = (v[i] - m[i, i+1:] @ x[i+1:]) / m[i, i]
assert np.allclose(m@x, v)
return x
def solve(m, v):
L, U = decompose(m)
x = solve_upper(U, solve_lower(L, v))
assert np.allclose(m@x, v)
return x

View file

@ -0,0 +1,132 @@
import numpy as np
import scipy as sp
def decompose(a, c, e):
"""
Computes the LU decomposition of a tridiagonal matrix.
"""
α = np.zeros(len(c))
β = a.copy()
for i in range(len(c)):
α[i] = e[i] / β[i]
β[i + 1] -= c[i] * α[i]
# Sanity check
if len(a) <= 10:
assert np.allclose(
to_array(a, c, e),
to_array(*from_lower(α)) @ to_array(*from_upper(β, c))
)
return (α, β)
def to_csr(a, c, e):
"""
Converts a tridiagonal matrix into a scipy csr sparse matrix.
"""
n = len(c)
values = np.zeros(n * 3 + 1)
values[::3] = a
values[1::3] = c
values[2::3] = e
col_indices = np.zeros_like(values)
col_indices[1::3] = np.arange(1, n + 1)
col_indices[2::3] = np.arange(0, n)
col_indices[3::3] = np.arange(1, n + 1)
index_ptr = np.zeros(n + 2)
index_ptr[1:n+1] = np.arange(2, n * 3 + 2, 3)
index_ptr[n+1] = n * 3 + 1
return sp.sparse.csr_array((values, col_indices, index_ptr))
def to_array(a, c, e):
"""
Converts a tridiagonal matrix into a numpy matrix.
"""
return to_csr(a, c, e).toarray()
def from_lower(α):
"""
Turns the lower vector of a decomposition into a tridiagonal matrix.
Example ussage:
```py
α, β = decompose(m)
print(from_lower(α))
```
"""
return (np.ones(len(α) + 1), np.zeros(len(α)), α)
def from_upper(β, c):
"""
Turns the upper vectors of a decomposition into a tridiagonal matrix.
Example ussage:
```py
α, β = decompose((a, c, e))
print(from_upper(β, c))
```
"""
return (β, c, np.zeros(len(c)))
def solve_lower(α, rhs):
"""
Solve a linear system of equations Mx = v
where M is a lower triangular matrix constructed
by LU decomposing a tridiagonal matrix.
"""
x = np.zeros_like(rhs)
x[0] = rhs[0]
for i in range(1, len(rhs)):
x[i] = rhs[i] - α[i - 1] * x[i - 1]
if len(α) <= 10:
assert np.allclose(to_array(*from_lower(α)) @ x, rhs)
return x
def solve_upper(β, c, rhs):
"""
Solve a linear system of equations Mx = v
where M is an upper triangular matrix constructed
by LU decomposing a tridiagonal matrix.
"""
x = np.zeros_like(rhs)
x[-1] = rhs[-1] / β[-1]
for i in reversed(range(len(rhs) - 1)):
x[i] = (rhs[i] - c[i] * x[i+1]) / β[i]
if len(β) <= 10:
assert np.allclose(to_array(*from_upper(β, c)) @ x, rhs)
return x
def solve(a, c, e, rhs):
α, β = decompose(a, c, e)
x = solve_upper(β, c, solve_lower(α, rhs))
if len(α) <= 10:
assert np.allclose(to_array(a, c, e)@x, rhs)
return x
# Small sanity check for the above code
def main():
a, c, e = (np.ones(4), 2*np.ones(3), 3*np.ones(3))
rhs = np.ones(4)
result = solve(a, c, e, rhs)
print(f"m={to_array(a, c, e)}")
print(f"{rhs=}")
print(f"{result=}")
print(to_array(a, c, e) @ result)
main()