
Scientific Programming Project 2: Linear algebra meets optimization

Instructions & grading scheme

• DEADLINE for final discussion: Thursday 30.3.2023, 18:00

• DEADLINE for contacting TA to schedule the discussion: Tuesday 28.3.2023, 23:59

You are allowed to work in groups of two. Each group is free to work on the same code/notebook or on
individual codes/notebooks. However, the graded discussions of the project will take place individually
for each group member.

Every student is responsible for contacting his/her TA to arrange a meeting for the
discussion. Requests received after the scheduling deadline will not be admitted.

The discussion will take a maximum of 40 minutes. Please send the Python notebook/module files
to the TA before the discussion starts, not doing this will subtract 10 points.

It is imperative to note that failure to meet the deadline for the discussion of each project will result
in a failing grade for the project and therefore, the course. In the event of a failed project discussion at
the initial attempt, there is an opportunity to rectify it within 48 hours, resulting in a “RESIT” grade
rather than a grade in Progress for an “EXAM”. However, in exceptional circumstances, such as a case
of serious force majeure, the TA may be requested to defer the discussion.

This assignment consists of implementation questions and theory questions. Implementation ques-
tions (≡ all questions not marked ‘Theory question’) ask you to write python code, while theory questions
ask you to interpret the behavior and results of the methods you implement.
For the implementation questions, the following requirements enter the grade:

R1. Functionality of the code: the code runs without errors and computes the correct results.

R2. Adequate use of control structures (if-elif-else statements, for or while loops) and functions
– this means, apart from functionality, avoiding redundant, unnecessary and repeated code state-
ments or groups of statements that can be coded efficiently with loops and/or functions.

R3. High quality of code:

(a) Descriptive variable and function names make the code easy to read and understand.

(b) Functions clearly structure and organize the code, encapsulating tasks/code segments to im-
prove readability and proneness to errors and to enable code reusability, and break up large
sections (so-called “spaghetti code”).

(c) The code is well annotated with comments1.

(d) Avoid inconsistencies in the naming of functions and variables (choose a format and stick to
it, e.g., min_max_search() vs. minMaxSearch()), avoid mixing single and double quotes for
strings, and inconsistent indenting of code blocks.

(e) Functions MUST NOT use global variables!

(f) Output formatting: printed output should be easy to read and understand, e.g.:

Computing time of this function is: 10.3 secs

or

N = 10, error = 0.0012343234

Plots need to appear with labels and legends.

For each implementation question, the grading scheme is the following:

• 100% of points if the code satisfies all requirements R1, R2, R3.

• 50% of points if the code satisfies requirements R1 and R3, but not R2, or R1 and R2 but not R3.

1Helpful comments are ones that help explain code segments the meaning of which is not immediately clear (e.g., from
good variable/function naming), or why (as opposed to how) something has to be done. Bad comments are those that
state the obvious (e.g., the comment #loop before a for loop or #check if x is greater than y before if x > y:).
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• 25% of points if the code only satisfies requirement R1.

• 0% of points otherwise. (Failure to follow the instructions of the question also leads to 0 points, for
example, solving a different problem or not writing a function when the question explicitly asked
to “implement a function”.)

• Additionally, for each bug (which leads to a wrong result), 10% of points will be discounted.

If during the discussion the student is unable to explain the code and the obtained results or is unable
answer the questions of the TA, 0% of points are awarded for the question.

The discussion serves to provide personalized feedback and is a learning activity, too,
not just an assessment. Answers to the project will not be provided, so please use the
discussion to learn about your (possible) mistakes.
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Assignments

Please take into account that:

• For all complexity calculations, define your elementary operations as addition, division, multipli-
cation and square roots.

• For question 1 and 2 do NOT use the sparse module of SciPy. Use it only for question
3. For questions 1 and 2 you need to code everything yourself. You can of course re-use code you
coded during the previous labs.

1 Python modules (5 points)

In this project you will make use of your functions from Lab 9 for solving sparse tridiagonal linear systems
by means of LU decomposition and eigenvalue computation.

• Create a python module with a descriptive name containing all relevant functions from the labs
and import your module in the Colab notebook for this project.

2 Measurement denoising (42 points)

Problem setup

When making measurements during a physical experiment (for instance measuring at different positions
the velocity of a moving object) one will make measurement errors, noise.

Assume the exact values are given by g(x) for x ∈ [−1, 1] and and the measurements are done at N+1
equidistant points, including the extremes of the interval. Let us call those sampling points x0, . . . , xN ,
where x0 = −1 and xN = 1. Assume the measurements yi are given by yi = g(xi) + ϵi, with ϵi the
measurement noise at xi. The goal is to remove that noise and recover a smooth function which we hope
is closer to g(x) than the measurements.

The values of the smoothed function si at xi are found as the solution of the following optimization
problem:

arg min
s0,...,sN

f(s0, . . . , sN ) (1)

with

f(s0, . . . , sN ) =
1

2

N∑
k=0

(yk − sk)
2 + β

1

2

N∑
k=1

(sk − sk−1)
2 (2)

and β ≥ 0 a user-defined parameter that balances data fit and the smoothness of the solution.
The aim is now to implement and assess two methods to solve this problem, one direct method solving

the optimality condition through a linear system and one iterative method based on the gradient descent
method.

Understanding the properties of the problem

The solution of the optimization problem (1) can be found by computing the gradient of (2). It can
easily be shown that

∂f

∂s0
= −(y0 − s0) + β(s0 − s1),

∂f

∂si
= −(yi − si) + β(2si − si−1 − si+1), i = 1, . . . , N − 1

∂f

∂sN
= −(yN − sN ) + β(sN − sN−1),

and ∇f can be written as
∇f = (I + βA)s⃗− y⃗,
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with I the identity matrix and A a tridiagonal matrix. Since A is symmetric positive semi-definite and
β ≥ 0, the Hessian I + βA is non-singular and hence there exists a unique vector s⃗ such that ∇f(s⃗) = 0.
This vector is the solution of Problem (1).

1. (2 pts) Theory question: Determine the matrix A. Verify with your TA before continuing!

Solving the problem directly

2. (2 pts) Implement a function that, for a given vector x⃗ consisting of the sampling points x0, . . . , xN

returns g⃗ and y⃗, with gi = g(xi). Generate ϵ⃗ using 0.05*np.random.randn(N+1) and take g(x) =
p5(x), with x = [−1, 1] and pn(x) =

1
n+1

∑n
k=0 x

k.

3. (8 pts) Implement a function that, given y⃗ (the data) and β, returns the vector s⃗ (the smoothed
data) that minimizes f . Solve the optimization problem by computing the solution to the linear
system (I + βA)s⃗ = y⃗, making use of the functions you implemented in Lab 9. Make use of
the sparsity of the matrix I + βA – the full/dense matrix should never be formed! Explain your
implementation in the discussion.

Use the following function skeleton and respect the argument/return value descriptions in the
docstring (the text enclosed by the triple quotes):

def smooth(data, beta):

"""Smooth noisy data (y) by means of solving a minimization problem.

Args:

data (numpy.array): noisy data to be smoothed (y)

beta (float): parameter >= 0 that balances fit and smoothing

Returns:

numpy array of smoothed data (s)

"""

# <YOUR CODE>

return data_smoothed

4. (2 pts) Plot in one figure the results for the original (noise free) function/polynomial g(x) = p5(x),
the noisy measurements (as data points) and the smoothed function, present the results in the
discussion for N = 1e2 and β = 10.

5. (2 pts) Show what happens with s0, . . . , sN (both on paper and using your code) when β → ∞.

6. (2 pts) Show what happens with s0, . . . , sN (both on paper and using your code) when β → 0.

7. (4 pts) Theory question: determine on paper the order of the time complexity of the algorithm in
terms of N . Include ALL the steps involved.

8. (2 pts) Theory question: consider as an approximation of the space complexity the memory needed
to store the tridiagonal matrix. Compare the space in memory taken by the sparse tridiagonal
matrix A with that of its dense counterpart. Assume a general N × N matrix and indicate the
space as a function of N in Big-O notation (and not in actual units of Bytes) including the constant
of the leading order term.

Solving the problem iteratively

We will now solve Problem (1) iteratively using the gradient descent method seen in the lecture.

9. (2 pts) Theory question: show that the method converges if α < 2/(1 + βλmax), with λmax the
largest eigenvalue of A.
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10. (10 pt) Implement a function that, given y⃗, β and the number of gradient descent iterations, returns
s⃗ using a gradient descent approach. The function needs to compute λmax using the Power method
described/implemented in Lab 7 and then assign a value to α such that the method converges.
You can make use of the functions you implemented previously in this project and in the labs.
You will for sure need to adapt the function estimating the eigenvalue of a matrix to your current
tridiagonal matrix structure. You need to show this explicitly in the discussion.

Use the following function skeleton and respect the argument/return value descriptions in the
docstring:

def smooth_iterative(data, beta, num_iterations):

"""Smooth noisy data (y) by means of solving a minimization problem

iteratively with the gradient descent method.

Args:

data (numpy.array): of the noisy data to be smoothed (y)

beta (float): parameter >= 0 that balances fit and smoothing

num_iterations (int): number of gradient descent iterations (>0)

Returns:

numpy array of smoothed data (s)

"""

# <YOUR CODE>

return data_smoothed

11. (2 pt) For a large value of β compare, by making a plot, your result of the gradient descent method
with your result of the direct method. Repeat for increasing number of iterations of the gradient
descent method (choose suitable values for the number of iterations).

12. (4 pt) Theory question: determine on paper the order of complexity of the gradient descent
algorithm in terms of the number of iterations of the gradient descent method and N , for the
particular problem you are dealing with. How does this complexity compare with the complexity
of the direct solver? Which method would you choose?

3 Image denoising (30 points)

An image consists of an array of values which are related to colors/intensities. Let us denote the “true”
2D image array p ∈ RNy×Nx , with Nx and Ny the number of pixels in the horizontal and the vertical
direction, i.e., the number of columns (Nx) and rows (Ny).

Let us now call the 2D noisy image yi,j = pi,j + ϵi,j , and the values of the smoothed 2D image array
s, which we will find as the solution of the following optimization problem:

argmin
s

f(s) (3)

with

f(s) =
1

2

Ny∑
i=1

Nx∑
j=1

(yi,j − si,j)
2 + β

1

2

Ny∑
i=1

Nx∑
j=2

(si,j − si,j−1)
2. (4)

Note that the smoothing is applied only in the “row” dimension of the matrix (i.e., on the pixels in the
x-direction).

By rearranging y and s row by row as 1D vectors y⃗ and s⃗ of size NxNy, the term multiplying β in
Equation (4) can be rewritten as

1

2
∥Cs⃗∥2

with C a block diagonal matrix of dimension NxNy × NxNy consisting of Ny matrices B of dimension
Nx ×Nx. The diagonal block matrices B follow directly from the second term in Equation (4) as upper
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diagonal matrices given by

B =



−1 1 0 . . . . . . . . . 0

0 −1 1 0

0 −1 1 0
...

. . .
. . .

. . .
. . .

... 0 −1 1 0

0 −1 1

0 . . . . . . . . . 0 0 0


.

It follows that ∇f can be written as

∇f = (I + βCTC)s⃗− y⃗,

The Hessian I + βCTC, a matrix of dimension NxNy ×NxNy, is non-singular and hence there exists a
unique vector s⃗ such that ∇f(s⃗) = 0. Rearranging the 1D vector s⃗ as 2D array s gives the solution of
Problem (3).

1. (10 pt) Implement a function that by receiving β,Nx, Ny returns the Hessian of f given by
I + βCTC (so the hard part here is to implement C). Since Nx, Ny can become a very large
number even for a simple image, you will need to work with matrices in sparse format using
SciPy’s module sparse.

Use the following function skeleton and respect the argument/return value descriptions in the
docstring:

def hessian(beta, nx, ny):

"""Compute the Hessian of the image denoising problem, given by

`H = I + beta C^T C`.

Args:

beta (float): parameter >= 0 that balances fit and smoothing

nx (int): number of pixels in x-direction

ny (int): number of pixels in y-direction

Returns:

H: sparse hessian matrix (scipy.sparse.csr_array)

"""

# <YOUR CODE>

return H

2. (10 pt) In Brightspace the Python script image_tools.py (with functions that load an image,
add noise to it, plot and save it) as well as the image sonic.jpg are available.

• Upload both to your Google drive. Your drive should already be accessible for Google colab
from assignment 1.

• In your Colab notebook, using the python script as a module, call the create noisy image()

function from the module to create a noisy grayscale version of the image, which is saved as
sonic gray noisy.jpg.

• Read in the noisy image as done in image tools.py, for instance:

from PIL import Image # PIL is an image processing module

import numpy as np

# path to file, e.g.

filepath = "/content/drive/My Drive/sonic_gray_noisy.jpg"

image = np.asarray(Image.open(filepath))

• Now, use your hessian function from question 3.1 to build the Hessian and solve the linear
system (I+βCTC)s⃗ = y⃗ (using the linalg submodule of scipy.sparse) to find the smoothed
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image satisfying Equation (3). You can use the numpy functions flatten and reshape to
rearrange the 2D image array y as 1D vector y⃗ and the 1D vector s⃗ as 2D image array s. (Pay
attention to whether these functions handle the 2D arrays row-by-row or column-by-column!)
Plot the smoothed images (as done in image tools.py) for a few values of β. You should
take the value of β such that you can notice the effect of the smoothing, but you can still
recognize the character in the image.

3. (10 pts) The second term in Eq. (4) smoothes the image along the horizontal direction by “pe-
nalizing” the horizontal pixel-to-pixel variation of the intensity values. Consider now the case of
vertical smoothing. Find the equivalents of Eq. (4) and, as a consequence, B for this case, and
repeat the previous assignment 3.2.

Remark: The results should look quite blurred because this simple method for denoising also smoothes
the image itself, not just the noise. More advanced methods exist but are out of the scope of this course.
Our goal was just to give you fun examples to learn programming, we hope you enjoyed it! A better
method is the so-called total variation denoising leading to a more complex optimization problem. You
will see this in the course Introduction to Opimization.


