import LeanSandbox.Nat macro "nat_ring_all" : tactic => `(simp_all [Nat.mul_assoc, Nat.mul_comm, Nat.mul_left_comm, Nat.add_assoc, Nat.add_left_comm, Nat.add_comm, Nat.left_distrib, Nat.right_distrib]) macro "nat_ring" : tactic => `(simp [Nat.mul_assoc, Nat.mul_comm, Nat.mul_left_comm, Nat.add_assoc, Nat.add_left_comm, Nat.add_comm, Nat.left_distrib, Nat.right_distrib]) macro "quotient_madness" : tactic => `(simp [Quotient.mk', Quotient.mk, Quotient.liftOn₂, Quotient.lift₂, Quotient.lift]) structure RawInt where pos : Nat neg : Nat deriving Repr private def eqv : (x y: RawInt) → Prop | ⟨a, b⟩, ⟨c, d⟩ => a + d = c + b infix:50 " ~ " => eqv private theorem eqv.refl (x: RawInt) : x ~ x := rfl private theorem eqv.symm {x y: RawInt} (xy: x ~ y): y ~ x := Eq.symm xy /- a - b c - d e - f a + d = c + b c + f = e + d => a + f = e + b -- the target a + d + c + f = c + b + e + d a + f + e + b -- done -/ private theorem eqv.trans {x y z: RawInt} (xy: x ~ y) (yz: y ~ z): x ~ z := by have summed: _ := Nat.add_equations xy yz apply @Nat.add_right_cancel _ (y.pos + y.neg) _ nat_ring_all private theorem is_equivalence: Equivalence eqv := { refl := eqv.refl, symm := eqv.symm, trans := eqv.trans } instance rawIntSetoid: Setoid RawInt where r := eqv iseqv := is_equivalence def MyInt: Type := Quotient rawIntSetoid private theorem eqv.sound: x ~ y → Quotient.mk' x = Quotient.mk' y := Quot.sound @[simp] def MyInt.mk (pos neg: Nat): MyInt := Quotient.mk' ⟨pos, neg⟩ notation "{ " a₁ ", " a₂ " }" => MyInt.mk a₁ a₂ @[simp, inline] private def MyInt.ofRawInt(raw: RawInt) := MyInt.mk raw.pos raw.neg @[simp, inline] private def RawInt.ofNat(nat: Nat): RawInt := ⟨nat, 0⟩ @[simp, inline] private def MyInt.ofNat(nat: Nat): MyInt := {nat, 0} private instance rawIntOfNat: OfNat RawInt n where ofNat := RawInt.ofNat n instance myIntOfNat: OfNat MyInt n where ofNat := MyInt.ofNat n namespace MyInt private def negateRawInt: RawInt → MyInt | ⟨pos, neg⟩ => {neg, pos} /- a - b = c - d a + d = c + b b + c = d + a b - a = d - c -/ private theorem negateRawInt.respects {x y: RawInt} (xy: x ~ y): negateRawInt x = negateRawInt y := by apply eqv.sound simp_all [eqv, Nat.add_comm] def negate (τ: MyInt): MyInt := Quotient.liftOn τ negateRawInt @negateRawInt.respects instance negMyInt: Neg MyInt where neg := negate private theorem double_neg_elim: ∀x, x = negate (negate x) := by intro x induction x using Quotient.ind rfl private def addRawInts: RawInt → RawInt → MyInt | ⟨a, b⟩, ⟨c, d⟩ => {a + c, b + d} private theorem addRawInts.respects {a b c d: RawInt} (ac: a ~ c) (bd: b ~ d): addRawInts a b = addRawInts c d := by have summed: _ := Nat.add_equations ac bd apply eqv.sound simp [eqv] at summed ⊢ nat_ring_all private theorem addRawInts.comm (a b: RawInt): addRawInts a b = addRawInts b a := by simp_all [addRawInts, Nat.add_comm] def add (τ β: MyInt): MyInt := Quotient.liftOn₂ τ β addRawInts @addRawInts.respects private instance hAddRawInts: HAdd RawInt RawInt MyInt where hAdd := addRawInts instance addMyInts: Add MyInt where add := add def sub (a b: MyInt): MyInt := a + (-b) instance subMyInt: Sub MyInt where sub := sub @[simp] theorem sub.x_minus_x_is_zero (a: MyInt): a - a = 0 := by simp_all [HSub.hSub, sub, HAdd.hAdd, add, negate, Neg.neg, MyInt.ofNat] induction a using Quotient.ind apply eqv.sound simp [eqv] apply Nat.add_comm theorem add.comm: ∀x y: MyInt, x + y = y + x := by intro x y simp_all [HAdd.hAdd, add] induction x, y using Quotient.ind₂ quotient_madness apply addRawInts.comm theorem add.assoc(x y z: MyInt): x + (y + z) = (x + y) + z := by simp_all [HAdd.hAdd, add] induction x, y using Quotient.ind₂ induction z using Quotient.ind apply eqv.sound simp [eqv] nat_ring_all @[simp] theorem add.zero(x: MyInt): x + 0 = x := by simp_all [HAdd.hAdd, add] induction x using Quotient.ind apply eqv.sound simp [eqv] /- (a - b) * (c - d) ac - bc - ad + bd -/ private def multiplyRawInts: RawInt → RawInt → MyInt | ⟨a, b⟩, ⟨c, d⟩ => {a * c + b * d, b * c + a * d} /- ac : c.neg + a.pos = a.neg + c.pos bd : d.neg + b.pos = b.neg + d.pos ⊢ a.neg * b.neg + (a.pos * b.pos + (c.pos * d.neg + c.neg * d.pos)) = c.neg * d.neg + (a.pos * b.neg + (a.neg * b.pos + c.pos * d.pos)) a - b c - d e - f g - h f + a = b + e h + c = d + g bd + ac + eh + fg = fh + ad + bc + eg bd + ac + fc + eh + fg + ec = fh + ad + bc + ec + eg + fc + cf + ce bd + c(a + f) + eh + fg + ec = fh + ad + c(b + e) + eg + fc bd + eh + fg + ec = fh + ad + eg + fc bd + e(h + c) + fg = f(h + c) + ad + eg + bg + ag b(d + g) + e(h + c) + fg + ag = f(h + c) + a(d + g) + bg + eg (h + c)(b + e) + g(a + f) = (h + c)(f + a) + g(b + e) -/ private theorem multiplyRawInts.respects: ∀ {x y z w: RawInt} (xz: x ~ z) (yw: y ~ w), (multiplyRawInts x y = multiplyRawInts z w) | ⟨a, b⟩, ⟨c, d⟩, ⟨e, f⟩, ⟨g, h⟩ => by intro xz yw apply eqv.sound simp_all [eqv] have first: (c + h) * (b + e) + g * (a + f) + c * (a + f) = (c + h) * (f + a) + g * (b + e) + c * (b + e) := by simp [Nat.add_comm, xz, yw] have second: b * (d + g) + e * (c + h) + c * (a + f) + f * g + a * g = f * (c + h) + a * (d + g) + c * (b + e) + b * g + e * g := by simp [yw, xz] at first ⊢ conv at first in g * (e + b) => rw [<-xz] conv at first => tactic => nat_ring nat_ring exact first conv at second => tactic => nat_ring apply @Nat.subtract_to_equation_left _ _ (a * g + b * g + c * f + c * e) nat_ring_all def multiply (τ β: MyInt): MyInt := Quotient.liftOn₂ τ β multiplyRawInts @multiplyRawInts.respects private instance hMulRawInt: HMul RawInt RawInt MyInt where hMul := multiplyRawInts instance mulMyInt: Mul MyInt where mul := multiply private theorem multiplyRawInts.comm (a b: RawInt): a * b = b * a := by apply eqv.sound simp [eqv] simp_all [multiplyRawInts, Nat.mul_comm] nat_ring_all theorem multiply.comm (a b: MyInt): a * b = b * a := by simp_all [Mul.mul, multiply] induction a, b using Quotient.ind₂ quotient_madness apply multiplyRawInts.comm theorem multiply.assoc(x y z: MyInt): x * (y * z) = (x * y) * z := by simp_all [Mul.mul, multiply] induction x, y using Quotient.ind₂ induction z using Quotient.ind apply eqv.sound simp [eqv] nat_ring_all @[simp] theorem multiply.one(x: MyInt): x * 1 = 1 * x := by simp_all [Mul.mul, multiply] induction x using Quotient.ind apply eqv.sound simp [eqv] @[simp] theorem multiply.zero(x: MyInt): x * 0 = 0 := by simp_all [Mul.mul, multiply] induction x using Quotient.ind apply eqv.sound simp [eqv] theorem left_distrib(x y z: MyInt): x * (y + z) = x * y + x * z := by simp_all [Mul.mul, Add.add, add, multiply] induction x, y using Quotient.ind₂ induction z using Quotient.ind apply eqv.sound simp [eqv] nat_ring_all theorem right_distrib(x y z: MyInt): (x + y) * z = x * z + y * z := by simp_all [Mul.mul, Add.add, add, multiply] induction x, y using Quotient.ind₂ induction z using Quotient.ind apply eqv.sound simp [eqv] nat_ring_all /- notes on division? t * (c - d) + r = a - b t * c + b + r = a + t * d -/ @[simp] def is_even(x: MyInt) := ∃h, h + h = x @[simp] def is_odd(x: MyInt) := ∃h, h + h + 1 = x theorem double_is_even(x: MyInt): is_even (2 * x) := by simp exists x induction x using Quotient.ind apply eqv.sound simp [eqv, Nat.double.addition_is_multiplication] theorem raw_int_induction (P: MyInt → Prop) (pz: P 0) (pn: ∀k, P k ↔ P (k + 1)): (x: RawInt) → ∃k, k ~ x ∧ P (MyInt.ofRawInt k) | ⟨0, 0⟩ => ⟨0, ⟨rfl, pz⟩⟩ | ⟨Nat.succ a, 0⟩ => by have ⟨⟨kp, kn⟩, pk⟩ := raw_int_induction P pz pn ⟨a, 0⟩ exists (⟨kp + 1, kn⟩ : RawInt) apply And.intro . simp [eqv, Nat.succ_add] rw [<-pk.left] simp [Nat.add_zero] . apply (@pn {kp, kn}).mp exact pk.right | ⟨Nat.succ a, Nat.succ b⟩ => by have ⟨k, pk⟩ := raw_int_induction P pz pn ⟨a, b⟩ exists k apply And.intro . simp [eqv, Nat.succ_add] rw [<-pk.left] simp_arith . exact pk.right | ⟨0, Nat.succ a⟩ => by have ⟨⟨kp, kn⟩, pk⟩ := raw_int_induction P pz pn ⟨0, a⟩ exists (⟨kp, kn + 1⟩ : RawInt) apply And.intro . have pkl := pk.left simp [eqv, Nat.succ_add, Nat.add_zero] at pkl ⊢ rw [<-pkl] simp_arith . have recurse := (@pn {kp, kn + 1}).mpr have rewriter: {kp, kn + 1} + 1 = {kp, kn} := by apply eqv.sound simp [eqv] simp_arith rw [rewriter] at recurse exact (recurse pk.right) theorem int_induction (P: MyInt → Prop) (zero: P 0) (succ: ∀k, P k ↔ P (k + 1)): ∀k, P k := by intro k induction k using Quotient.ind rename RawInt => kRaw have ⟨e, ⟨eIsK, proof⟩⟩ := raw_int_induction P zero succ kRaw have eIsKQuot : MyInt.ofRawInt e = MyInt.ofRawInt kRaw := by exact (eqv.sound eIsK) simp [Quotient.mk'] at eIsKQuot rw [<-eIsKQuot] exact proof theorem add_left_cancel {a b c: MyInt}: a + b = a + c → b = c := by intro hip induction b, c using Quotient.ind₂ induction a using Quotient.ind rename RawInt => c simp_all [HAdd.hAdd, Add.add, add] conv at hip => tactic => quotient_madness /- apply eqv.sound -/ /- simp [eqv] -/ /- nat_ring -/ simp_all [MyInt.addRawInts, Quotient.mk', Quotient.mk] sorry /- induction a using int_induction with -/ /- | zero => -/ /- rw [add.comm 0 c, add.comm 0 b] -/ /- simp_all -/ /- | succ k => -/ /- apply Iff.intro -/ /- . intro win -/ /- intro previous -/ /- have p: k + b = k + c := by -/ /- rw [add.comm k 1] at previous -/ /- induction b, c using Quotient.ind₂ -/ /- induction k using Quotient.ind -/ /- rename RawInt => c -/ /- simp [HAdd.hAdd, Add.add, add] -/ /- apply eqv.sound -/ /- simp [eqv] -/ /- nat_ring -/ /- -/ /- sorry -/ /- exact (win p) -/ /- . sorry -/ /- -/ theorem odd_and_even_contradict(x: MyInt): ¬(is_odd x ∧ is_even x) | ⟨⟨h₁, oddProof⟩, ⟨h₂, evenProof⟩⟩ => by have wrong: (1: MyInt) = 0 := by apply @add_left_cancel (h₁ + h₂) exact oddProof.trans evenProof.symm sorry contradiction theorem odds_not_even(x: MyInt): is_odd x ↔ ¬(is_even x) := by apply Iff.intro case mp => intro oddProof intro evenProof apply odd_and_even_contradict x exact ⟨oddProof, evenProof⟩ case mpr => simp [is_even, is_odd] sorry end MyInt