1
Fork 0
solar-conflux/purescript/factorio-throughput/src/Throughput.purs
2023-06-04 15:29:29 +02:00

308 lines
11 KiB
Plaintext

module RealFunction where
import Prelude
import Data.Array (length, mapWithIndex)
import Data.Array as Array
import Data.Either (Either)
import Data.Foldable (foldMap, for_, minimum)
import Data.FoldableWithIndex (foldlWithIndex, forWithIndex_)
import Data.Generic.Rep (class Generic)
import Data.HashMap (HashMap)
import Data.HashMap as HashMap
import Data.HashMap as Map
import Data.HashSet as HashSet
import Data.Int (toNumber)
import Data.Lens (Lens')
import Data.Lens.Record (prop)
import Data.List (List(..), (:))
import Data.Maybe (Maybe(..), fromJust, fromMaybe)
import Data.Number (infinity)
import Data.Show.Generic (genericShow)
import Data.Traversable (for)
import Data.Tuple (Tuple(..), fst, snd, uncurry)
import Data.Tuple.Nested (type (/\), (/\))
import Functorio.Lens (modifyAt)
import Math (sin)
import Partial.Unsafe (unsafeCrashWith, unsafePartial)
import Run (Run, extract)
import Run.Except (EXCEPT, fail, runExcept)
import Run.Fail.Extra (traverseFail)
import Run.Reader (READER, ask, runReader)
import Run.Reader.Extra (fromState')
import Run.State (STATE, runState)
import Run.Supply (SUPPLY, generate, runSupply)
import Type.Proxy (Proxy(..))
import Type.Row (type (+))
import Visited (VISITED, once, runVisited)
type RealFunction = Number -> Number
type BeltConfig =
{ speed :: Number
, delay :: Number }
type ChestConfig =
{ maxContent :: Number
, delay :: Number }
type PortId = Int
type MachineId = Int
data PortSide = Input | Output
data Machine
= Belt { input :: PortId, output :: PortId, config :: BeltConfig }
| Chest { inputs :: Array PortId, outputs :: Array PortId, config :: ChestConfig }
| Provider (Array PortId) RealFunction
| Consumer PortId
type Factory = HashMap MachineId Machine
---------- Some configs
yellowBelt :: BeltConfig
yellowBelt = { speed: 15.0, delay: 4.0/3.0 }
redBelt :: BeltConfig
redBelt = { speed: 30.0, delay: 4.0/6.0 }
blueBelt :: BeltConfig
blueBelt = { speed: 45.0, delay: 4.0/8.0 }
-- | Example factory
myFactory1 :: Factory
myFactory1 = Map.fromArray machines
where
machines = mapWithIndex Tuple
[ Provider [0, 1] $ startsAtZero $ \t -> 40.0 + 10.0 * sin t
, Belt { input: 0, output: 3, config: yellowBelt }
, Belt { input: 1, output: 4, config: redBelt }
-- , Belt { input: 2, output: 5, config: blueBelt }
, Consumer 3
, Consumer 4
]
myFactory :: Factory
myFactory = Map.fromArray machines
where
machines = mapWithIndex Tuple
[ Provider [0, 1, 2] $ startsAtZero $ \t -> 80.0
, Belt { input: 0, output: 3, config: yellowBelt }
, Belt { input: 1, output: 4, config: redBelt }
, Belt { input: 2, output: 5, config: blueBelt }
, Consumer 3
, Consumer 4
, Consumer 5
]
---------- Helpers for real functions
type Endomorphism a = a -> a
startsAtZero :: Endomorphism RealFunction
startsAtZero f x | x >= 0.0 = f x
| otherwise = 0.0
---------- Monad for factory solving
type PortData =
{ id :: PortId
, maxInput :: Number -> Number
, maxOutput :: Number -> Number }
data ConstraintExpression
= PortDependent (Array PortId) (Array PortData -> RealFunction)
| Function RealFunction
| Literal Number
type BiRelationship =
{ p1top2 :: RealFunction
, p2top1 :: RealFunction
, p1 :: PortId /\ PortSide
, p2 :: PortId /\ PortSide }
type BiRelationshipId = Int
data ThroughputConstraint
= Limit ConstraintExpression PortSide PortId
| BiRelationship BiRelationshipId BiRelationship
type Constraints = Array ThroughputConstraint
type SolveState =
{ constraints :: Constraints }
type SolveM = Run
( EXCEPT String
+ STATE SolveState
+ READER Factory
+ SUPPLY Int
+ () )
runSolveM :: forall a. Factory -> SolveM a -> Either String (Tuple SolveState a)
runSolveM factory = runReader factory >>> runState mempty >>> runExcept >>> runSupply ((+) 1) 0 >>> extract
focusBiRelationship :: PortId /\ PortSide -> BiRelationship -> Maybe BiRelationship
focusBiRelationship place relationship | relationship.p1 == place = Just relationship
| relationship.p2 == place = Just $ flipBiRelationship relationship
| otherwise = Nothing
focusBiRelationshipWithoutSide :: PortId -> BiRelationship -> Maybe BiRelationship
focusBiRelationshipWithoutSide id relationship | fst relationship.p1 == id = Just relationship
| fst relationship.p2 == id = Just $ flipBiRelationship relationship
| otherwise = Nothing
flipBiRelationship :: BiRelationship -> BiRelationship
flipBiRelationship { p1, p2, p1top2, p2top1 } = { p1: p2, p2: p1, p1top2: p2top1, p2top1: p1top2 }
factoryPorts :: Factory -> HashSet.HashSet PortId
factoryPorts = foldMap case _ of
Belt { input, output } -> HashSet.fromArray [input, output]
Provider outputs _ -> HashSet.fromArray outputs
Chest { inputs, outputs } -> HashSet.fromArray (inputs <> outputs)
Consumer input -> HashSet.singleton input
---------- System solving algorithm
constrain :: ThroughputConstraint -> SolveM Unit
constrain constraint = modifyAt _constraints $ push constraint
where
push = flip Array.snoc
collectConstraints :: SolveM Unit
collectConstraints = do
factory <- ask
for_ (HashMap.toArrayBy (/\) $ factory) $ uncurry collectConstraintsImpl
getPortData :: forall r. PortId -> Run (READER Constraints r) PortData
getPortData id = ado
maxInput <- tryFindBound $ id /\ Input
maxOutput <- tryFindBound $ id /\ Output
in { id, maxInput, maxOutput }
evalExpr :: forall r. ConstraintExpression -> Run (READER Constraints r) RealFunction
evalExpr = case _ of
Literal a -> pure (const a)
Function f -> pure f
PortDependent portIds f -> for portIds getPortData <#> f
tryFindBound :: forall r. PortId /\ PortSide -> Run (READER Constraints r) RealFunction
tryFindBound at = tryFindBoundImpl at <#> \f time -> extract $ runVisited $ f time
tryFindBoundSolveM :: PortId /\ PortSide -> SolveM RealFunction
tryFindBoundSolveM at = fromState' _constraints $ tryFindBound at
tryFindBoundPure :: PortId /\ PortSide -> Constraints -> RealFunction
tryFindBoundPure at constraints = extract $ runReader constraints $ tryFindBound at
tryFindBoundImpl :: forall r k.
PortId /\ PortSide ->
Run (READER Constraints r) (Number -> Run (VISITED BiRelationshipId k) Number)
tryFindBoundImpl (targetId /\ targetSide) = do
constraints <- ask
pure \time -> constraints
# traverseFail case _ of
Limit expr side id | side == targetSide && id == targetId ->
evalExpr expr <*> pure time
BiRelationship id raw
| Just relationship <- focusBiRelationship (targetId /\ targetSide) raw -> do
f <- once id fail $ tryFindValueImpl $ fst relationship.p2
f (relationship.p1top2 time)
_ -> fail
# runReader constraints
<#> minimum'
where
minimum' = minimum >>> fromMaybe 0.0
tryFindValue :: forall r. PortId -> Run (READER Constraints r) RealFunction
tryFindValue at = tryFindValueImpl at <#> \f time -> extract $ runVisited $ f time
tryFindValueImpl :: forall r k. PortId -> Run (READER Constraints r) (Number -> Run (VISITED BiRelationshipId k) Number)
tryFindValueImpl targetId = do
constraints <- ask
pure \time -> constraints
# traverseFail case _ of
Limit expr _ id | id == targetId -> evalExpr expr <*> pure time
BiRelationship id raw
| Just relationship <- focusBiRelationshipWithoutSide targetId raw -> do
f <- once id fail $ tryFindValueImpl $ fst relationship.p2
f (relationship.p1top2 time)
_ -> fail
# runReader constraints
<#> minimum'
where
minimum' = minimum >>> fromMaybe 0.0
tryFindValuePure :: PortId -> Constraints -> RealFunction
tryFindValuePure at constraints = extract $ runReader constraints $ tryFindValue at
collectConstraintsImpl :: MachineId -> Machine -> SolveM Unit
collectConstraintsImpl at = case _ of
Provider for amount -> do
forWithIndex_ for \index id -> do
let limit ports time
= ports
# map (\port -> port.id /\ port.maxOutput time)
# outputs (amount time)
# Array.findMap (\(id' /\ f) -> if id == id' then Just f else Nothing)
# unsafePartial fromJust
constrain $ Limit (PortDependent for limit) Input id
where
outputs :: Number -> Array (PortId /\ Number) -> Array (PortId /\ Number)
outputs total ports
= ports
# Array.sortWith snd
# foldlWithIndex (\index (past /\ remaining) (id /\ value) -> do
let current
| lengthLeft <- remaining / toNumber (count - index), value >= lengthLeft = lengthLeft
| otherwise = value
((id /\ current):past) /\ (remaining - current))
(Nil /\ total)
# fst
# Array.fromFoldable
where
count = length ports
Consumer for -> do
constrain $ Limit (Literal infinity) Output for
Belt { input, output, config } -> do
biId <- generate
constrain $ BiRelationship biId
{ p1: input /\ Output
, p2: output /\ Input
, p1top2: (+) config.delay
, p2top1: (+) (-config.delay) }
constrain $ Limit (Literal config.speed) Output input
constrain $ Limit (Literal config.speed) Input output
_ -> unsafeCrashWith "unimplemented"
---------- Lenses
_constraints :: Lens' SolveState (Array ThroughputConstraint)
_constraints = prop (Proxy :: _ "constraints")
---------- Typeclass instances
derive instance genericMachine :: Generic Machine _
derive instance genericPortSide :: Generic PortSide _
derive instance eqPortSide :: Eq PortSide
instance showMachine :: Show Machine where
show = case _ of
Provider for _ -> "Provider<" <> show for <> ">"
Consumer for -> "Consumer<" <> show for <> ">"
Belt { config, input, output } -> "Belt<" <> show input <> " -> " <> show output <> ", " <> show config <> ">"
Chest { inputs, outputs, config } -> "Chest<" <> show inputs <> " -> " <> show outputs <> ", " <> show config <> ">"
instance showConstraint :: Show ThroughputConstraint where
show = case _ of
Limit f side id -> show f <> " !> " <> showPort (id /\ side)
BiRelationship _ { p1, p2 } -> showPort p1 <> " <-> " <> showPort p2
where
showPort (p /\ side) = "?" <> show p <> case side of
Input -> "<-"
Output -> "<-"
instance showConstraintExpression :: Show ConstraintExpression where
show (Literal i) = show i
show (Function f) = "<Function>"
show (PortDependent ids f) = "(" <> show ids <> " -> <Function>)"
instance showPortSide :: Show PortSide where
show = genericShow