7cf93fd66f
Signed-off-by: prescientmoon <git@moonythm.dev>
236 lines
5 KiB
Python
236 lines
5 KiB
Python
import numpy as np
|
||
import scipy as sp
|
||
|
||
def assert_valid_tridiagonal(a, c, e):
|
||
"""
|
||
Validates a tridiagonal matrix.
|
||
"""
|
||
assert len(a) == len(c) + 1 == len(e) + 1
|
||
|
||
def create(a, c, e):
|
||
"""
|
||
Validates a tridiagonal matrix before creating it.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
return (a, c, e)
|
||
|
||
|
||
def decompose(a, c, e):
|
||
"""
|
||
Computes the LU decomposition of a tridiagonal matrix.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
|
||
α = np.zeros(len(c))
|
||
β = a.copy()
|
||
|
||
for i in range(len(c)):
|
||
α[i] = e[i] / β[i]
|
||
β[i + 1] -= c[i] * α[i]
|
||
|
||
# Sanity check
|
||
if len(a) <= 10:
|
||
assert np.allclose(
|
||
to_array(a, c, e),
|
||
to_array(*from_lower(α)) @ to_array(*from_upper(β, c))
|
||
)
|
||
|
||
return (α, β)
|
||
|
||
def to_csr(a, c, e):
|
||
"""
|
||
Converts a tridiagonal matrix into a scipy csr sparse matrix.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
|
||
return sp.sparse.diags((a, c, e), offsets=(0, 1, -1), format="csr")
|
||
|
||
def to_array(a, c, e):
|
||
"""
|
||
Converts a tridiagonal matrix into a numpy matrix.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
return to_csr(a, c, e).toarray()
|
||
|
||
def from_lower(α):
|
||
"""
|
||
Turns the lower vector of a decomposition into a tridiagonal matrix.
|
||
|
||
Example ussage:
|
||
```py
|
||
α, β = decompose(m)
|
||
print(from_lower(α))
|
||
```
|
||
"""
|
||
return create(np.ones(len(α) + 1), np.zeros(len(α)), α)
|
||
|
||
def from_upper(β, c):
|
||
"""
|
||
Turns the upper vectors of a decomposition into a tridiagonal matrix.
|
||
|
||
Example ussage:
|
||
```py
|
||
α, β = decompose((a, c, e))
|
||
print(from_upper(β, c))
|
||
```
|
||
"""
|
||
return create(β, c, np.zeros(len(c)))
|
||
|
||
def solve_lower(α, rhs):
|
||
"""
|
||
Solve a linear system of equations Mx = v
|
||
where M is a lower triangular matrix constructed
|
||
by LU decomposing a tridiagonal matrix.
|
||
"""
|
||
x = np.zeros_like(rhs)
|
||
|
||
x[0] = rhs[0]
|
||
|
||
for i in range(1, len(rhs)):
|
||
x[i] = rhs[i] - α[i - 1] * x[i - 1]
|
||
|
||
if len(α) <= 10:
|
||
assert np.allclose(to_array(*from_lower(α)) @ x, rhs)
|
||
|
||
return x
|
||
|
||
def solve_upper(β, c, rhs):
|
||
"""
|
||
Solve a linear system of equations Mx = v
|
||
where M is an upper triangular matrix constructed
|
||
by LU decomposing a tridiagonal matrix.
|
||
"""
|
||
x = np.zeros_like(rhs)
|
||
|
||
x[-1] = rhs[-1] / β[-1]
|
||
|
||
for i in reversed(range(len(rhs) - 1)):
|
||
x[i] = (rhs[i] - c[i] * x[i+1]) / β[i]
|
||
|
||
if len(β) <= 10:
|
||
assert np.allclose(to_array(*from_upper(β, c)) @ x, rhs)
|
||
|
||
return x
|
||
|
||
def solve(a, c, e, rhs):
|
||
"""
|
||
Solves a system of linear equations defined by a tridiagonal matrix.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
|
||
α, β = decompose(a, c, e)
|
||
x = solve_upper(β, c, solve_lower(α, rhs))
|
||
|
||
if len(α) <= 10:
|
||
assert np.allclose(to_array(a, c, e)@x, rhs)
|
||
|
||
return x
|
||
|
||
def multiply_vector(a, c, e, x):
|
||
"""
|
||
Performs a matrix-vector multiplication where the matrix is tridiagonal.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
assert len(x) == len(a)
|
||
|
||
result = np.zeros_like(x)
|
||
for i in range(len(x)):
|
||
result[i] = a[i] * x[i]
|
||
if i > 0:
|
||
result[i] += e[i - 1] * x[i - 1]
|
||
if i < len(x) - 1:
|
||
result[i] += c[i] * x[i + 1]
|
||
|
||
# Sanity check
|
||
if len(a) <= 10:
|
||
assert np.allclose(to_array(a, c, e) @ x, result)
|
||
|
||
return result
|
||
|
||
def largest_eigenvalue(a, c, e, initial_x, kmax):
|
||
"""
|
||
Computes the largest eigenvalue of a positive definite tridiagonal matrix.
|
||
"""
|
||
assert_valid_tridiagonal(a, c, e)
|
||
|
||
x = initial_x
|
||
for _ in range(kmax):
|
||
q = multiply_vector(a, c, e, x)
|
||
assert not np.allclose(q, 0) # Sanity check
|
||
x = q/np.linalg.norm(q)
|
||
|
||
# Computes the eigenvalue from the eigenvector
|
||
eigenvalue = (x @ multiply_vector(a, c, e, x)) / (x @ x)
|
||
|
||
# Sanity check
|
||
if len(initial_x) <= 10:
|
||
actual_eigenvalues, _ = np.linalg.eig(to_array(a, c, e))
|
||
assert np.allclose(
|
||
0,
|
||
np.min(
|
||
np.abs(
|
||
actual_eigenvalues - eigenvalue
|
||
)
|
||
)
|
||
)
|
||
|
||
return eigenvalue
|
||
|
||
def add(a, b):
|
||
"""
|
||
Adds two tridiagonal matrices.
|
||
"""
|
||
assert_valid_tridiagonal(*a)
|
||
assert_valid_tridiagonal(*b)
|
||
|
||
assert len(a[0]) == len(b[0])
|
||
|
||
result = create(a[0] + b[0], a[1] + b[1], a[2] + b[2])
|
||
|
||
# Sanity check
|
||
if len(a[0]) <= 10:
|
||
assert np.allclose(to_array(*result), to_array(*a) + to_array(*b))
|
||
|
||
return result
|
||
|
||
def identity(n):
|
||
"""
|
||
Returns the tridiagonal identity n*n matrix.
|
||
"""
|
||
assert n > 0 # Sanity check
|
||
return create(np.ones(n), np.zeros(n - 1), np.zeros(n - 1))
|
||
|
||
def scale(s, m):
|
||
"""
|
||
Multiplies a tridiagonal matrix by a scalar
|
||
"""
|
||
assert_valid_tridiagonal(*m)
|
||
|
||
result = create(s * m[0], s * m[1], s * m[2])
|
||
|
||
# Sanity check
|
||
if len(m[0]) <= 10:
|
||
assert np.allclose(result, s * to_array(*m))
|
||
|
||
return result
|
||
|
||
def transpose(a, c, e):
|
||
"""
|
||
Computes the transpose of a tridiagonal matrix.
|
||
"""
|
||
return create(a, e, c)
|
||
|
||
# Small sanity check for the above code
|
||
def main():
|
||
a, c, e = create(3*np.ones(4), 2*np.ones(3), 3*np.ones(3))
|
||
|
||
rhs = np.ones(4)
|
||
result = solve(a, c, e, rhs)
|
||
print(f"m={to_array(a, c, e)}")
|
||
print(f"{rhs=}")
|
||
print(f"{result=}")
|
||
print(to_array(a, c, e) @ result)
|
||
print(largest_eigenvalue(a, c, e, np.ones(4), 50))
|
||
|
||
# main()
|