721 lines
22 KiB
Haskell
721 lines
22 KiB
Haskell
|
|
||
|
{-
|
||
|
= Fixity fixups
|
||
|
|
||
|
The point of this code is to be able to take a table of fixity
|
||
|
information for unary and binary operators, then adjust an ast to
|
||
|
match these fixities. The standard way of handling this is handling
|
||
|
fixities at the parsing stage.
|
||
|
|
||
|
For the SQL parser, this is difficult because there is lots of weird
|
||
|
syntax for operators (such as prefix and postfix multiple keyword
|
||
|
operators, between, etc.).
|
||
|
|
||
|
An alterative idea which is used in some places is to parse the tree
|
||
|
regarding all the operators to have the same precedence and left
|
||
|
associativity, then correct the fixity in a pass over the ast after
|
||
|
parsing. Would also like to use this to fix the fixity for the join
|
||
|
trees, and set operations, after parsing them. TODO: anything else?
|
||
|
|
||
|
|
||
|
Approach
|
||
|
|
||
|
Really not sure how to get this correct. So: lots of testing
|
||
|
|
||
|
Basic testing idea: create an expression, then write down manually how
|
||
|
the expression should parse with correct fixity. Can write down the
|
||
|
expression in concrete syntax, and the correct fixity version using
|
||
|
parens.
|
||
|
|
||
|
Then can parse the expression, fix it, parse the fixed expression,
|
||
|
remove the parens and compare them to make sure they are equal.
|
||
|
|
||
|
Second layer of testing. For each source expression parsed, run it
|
||
|
through a generator which will generate every version of that tree by
|
||
|
choosing all possibilities of fixities on a token by token basis. This
|
||
|
will ensure the fixity fixer is robust. An alternative approach is to
|
||
|
guarantee the parser will produce trees where all the fixities are
|
||
|
known (e.g. unary operators always bind tighter than binary, binary
|
||
|
are all left associative, prefix unary bind tighter than postfix. This
|
||
|
way, the fix code can make some assumptions and have less code. We
|
||
|
will stick with the full general version which is more robust.
|
||
|
|
||
|
Another testing approach is to parse the tree with our non fixity
|
||
|
respecting parser then fix it, and also parse it with a fixity
|
||
|
respecting expression parser, and check the results are the same. This
|
||
|
is difficult with the parsec build expression parser which doesn't
|
||
|
handle nested unary operators, so have to find or write another build
|
||
|
expression parser. We can test the fixer with simple operators (single
|
||
|
symbol prefix, postfix and binary ops) and then use it on the complex
|
||
|
sql ast trees.
|
||
|
|
||
|
Can also try to generate trees ala quickcheck/smallcheck, then check
|
||
|
them with the fixer and the build expression parser.
|
||
|
|
||
|
generate a tree:
|
||
|
|
||
|
start with a term
|
||
|
then roll dice:
|
||
|
add a prefix
|
||
|
add a postfix
|
||
|
do nothing
|
||
|
then roll dice
|
||
|
add a binary op
|
||
|
for the second arg, recurse the algo
|
||
|
|
||
|
|
||
|
algorithm:
|
||
|
|
||
|
consider possible cases:
|
||
|
binop with two binops args
|
||
|
binop with prefix on left
|
||
|
binop with postfix on right
|
||
|
postfix with prefix inside
|
||
|
prefix with postfix inside
|
||
|
postfix with binop inside
|
||
|
prefix with binop inside
|
||
|
|
||
|
write a function to deal with each case and try to compose
|
||
|
|
||
|
Tasks:
|
||
|
|
||
|
write unary op tests: on each other, and with binary ops
|
||
|
figure out how to generate trees
|
||
|
do the step one tests (write the fixity with parens)
|
||
|
check out parsers expression parser
|
||
|
see if can generate trees using smallcheck
|
||
|
try to test these trees against expression parser
|
||
|
otherwise, generate tree, generate variations, check fixity always
|
||
|
produces same result
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
todo:
|
||
|
|
||
|
1. more tests for unary operators with each other
|
||
|
2. moving unary operators inside and outside binary operators:
|
||
|
have to think about how this will work in general case
|
||
|
3. ways to generate lots of tests and check them
|
||
|
-> what about creating a parser which parses to a list of all possible
|
||
|
parses with different fixities for each operator it sees?
|
||
|
4. ambiguous fixity cases - need position annotation to do these nicely
|
||
|
5. real sql: how to work with a variety of ast nodes
|
||
|
6. plug into simple-sql-parser
|
||
|
7. refactor the simple-sql-parser parsing code
|
||
|
8. simple-sql-parser todo for sqream: add other dml, dialects,
|
||
|
procedural?
|
||
|
9. testing idea: write big expressions with explicit parens everywhere
|
||
|
parse this
|
||
|
remove the parens
|
||
|
pretty print, then parse and fixfixity to see if same
|
||
|
then generate all variations of tree as if the fixities are different
|
||
|
and then fixfixity to check it restores the original
|
||
|
|
||
|
|
||
|
write fixity tests
|
||
|
write code to do the fixing
|
||
|
add error cases: put it in the either monad to report these
|
||
|
|
||
|
check the descend
|
||
|
then: move to real sql
|
||
|
different abstract representations of binops, etc.
|
||
|
what is the best way to deal with this? typeclass? conversion to and
|
||
|
from a generic tree?
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
can the binops be fixed on their own (precedence and assocativity)
|
||
|
and then the prefix and postfix ops in separate passes
|
||
|
|
||
|
what about a pass which puts the tree into canonical form:
|
||
|
all left associative, all unary ops tight as possible?
|
||
|
then the fixer can be easier?
|
||
|
-}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
{-# LANGUAGE DeriveDataTypeable,TupleSections #-}
|
||
|
import Data.Data
|
||
|
|
||
|
import Text.Parsec.String (Parser)
|
||
|
import Text.Parsec (try)
|
||
|
import Text.Parsec.Char
|
||
|
import Text.Parsec.Combinator
|
||
|
import Text.Parsec (parse,ParseError)
|
||
|
import Control.Applicative ((<|>),many) -- ((<**>),(<$>),(<*), (*>),(<*>), (<$), (<|>), many)
|
||
|
--import qualified Text.Parsec.String.Expr as E
|
||
|
import Control.Monad
|
||
|
--import Data.List (intercalate)
|
||
|
import Data.Maybe ()
|
||
|
--import qualified Test.HUnit as H
|
||
|
--import FunctionsAndTypesForParsing
|
||
|
import Debug.Trace
|
||
|
import Text.Show.Pretty
|
||
|
import Data.List
|
||
|
import Control.Applicative
|
||
|
|
||
|
import qualified Test.Tasty as T
|
||
|
import qualified Test.Tasty.HUnit as H
|
||
|
|
||
|
|
||
|
data Expr = BinOp Expr String Expr
|
||
|
| PrefOp String Expr
|
||
|
| PostOp String Expr
|
||
|
| Iden String
|
||
|
| Lit String
|
||
|
| App String [Expr]
|
||
|
| Parens Expr
|
||
|
deriving (Eq,Show,Data,Typeable)
|
||
|
|
||
|
{-
|
||
|
--------
|
||
|
|
||
|
quick parser
|
||
|
-}
|
||
|
|
||
|
parensValue :: Parser Expr
|
||
|
parensValue = Parens <$> parens valueExpr
|
||
|
|
||
|
idenApp :: Parser Expr
|
||
|
idenApp = try $ do
|
||
|
i <- identifier
|
||
|
guard (i `notElem` ["not", "and", "or", "is"])
|
||
|
choice [do
|
||
|
args <- parens (commaSep valueExpr)
|
||
|
return $ App i args
|
||
|
,return $ Iden i
|
||
|
]
|
||
|
|
||
|
lit :: Parser Expr
|
||
|
lit = stringLit <|> numLit
|
||
|
where
|
||
|
stringLit = Lit <$> lexeme (char '\'' *> manyTill anyChar (char '\''))
|
||
|
numLit = do
|
||
|
x <- lexeme (many1 digit)
|
||
|
let y :: Integer
|
||
|
y = read x
|
||
|
return $ Lit $ show y
|
||
|
|
||
|
prefOp :: Parser Expr
|
||
|
prefOp = sym <|> kw
|
||
|
where
|
||
|
sym = do
|
||
|
let prefOps = ["+", "-"]
|
||
|
s <- choice $ map symbol prefOps
|
||
|
v <- term
|
||
|
return $ PrefOp s v
|
||
|
kw = do
|
||
|
let prefOps = ["not"]
|
||
|
i <- identifier
|
||
|
guard (i `elem` prefOps)
|
||
|
v <- term
|
||
|
return $ PrefOp i v
|
||
|
|
||
|
postOp :: Parser (Expr -> Expr)
|
||
|
postOp = try $ do
|
||
|
let kws = ["is null"]
|
||
|
kwsp = map (\a -> try $ do
|
||
|
let x :: [String]
|
||
|
x = words a
|
||
|
mapM_ keyword_ x
|
||
|
return $ PostOp a
|
||
|
) kws
|
||
|
choice kwsp
|
||
|
|
||
|
binOp :: Parser (Expr -> Expr -> Expr)
|
||
|
binOp = symbolBinOp <|> kwBinOp
|
||
|
where
|
||
|
symbolBinOp = do
|
||
|
let binOps = ["+", "-", "*", "/"]
|
||
|
s <- choice $ map symbol binOps
|
||
|
return $ \a b -> BinOp a s b
|
||
|
kwBinOp = do
|
||
|
let kwBinOps = ["and", "or"]
|
||
|
i <- identifier
|
||
|
guard (i `elem` kwBinOps)
|
||
|
return $ \a b -> BinOp a i b
|
||
|
|
||
|
term :: Parser Expr
|
||
|
term = (parensValue
|
||
|
<|> try prefOp
|
||
|
<|> idenApp
|
||
|
<|> lit)
|
||
|
<??*> postOp
|
||
|
|
||
|
-- (<??>) :: Parser a -> Parser (a -> a) -> Parser a
|
||
|
-- p <??> q = p <**> option id q
|
||
|
|
||
|
(<??*>) :: Parser a -> Parser (a -> a) -> Parser a
|
||
|
p <??*> q = foldr ($) <$> p <*> (reverse <$> many q)
|
||
|
|
||
|
valueExpr :: Parser Expr
|
||
|
valueExpr = chainl1 term binOp
|
||
|
|
||
|
|
||
|
parens :: Parser a -> Parser a
|
||
|
parens = between openParen closeParen
|
||
|
|
||
|
openParen :: Parser Char
|
||
|
openParen = lexeme $ char '('
|
||
|
closeParen :: Parser Char
|
||
|
closeParen = lexeme $ char ')'
|
||
|
|
||
|
symbol :: String -> Parser String
|
||
|
symbol s = try $ lexeme $ do
|
||
|
u <- many1 (oneOf "<>=+-^%/*!|")
|
||
|
guard (s == u)
|
||
|
return s
|
||
|
|
||
|
identifier :: Parser String
|
||
|
identifier = lexeme ((:) <$> firstChar <*> many nonFirstChar)
|
||
|
where
|
||
|
firstChar = letter <|> char '_'
|
||
|
nonFirstChar = digit <|> firstChar
|
||
|
|
||
|
keyword :: String -> Parser String
|
||
|
keyword k = try $ do
|
||
|
i <- identifier
|
||
|
guard (i == k)
|
||
|
return k
|
||
|
|
||
|
keyword_ :: String -> Parser ()
|
||
|
keyword_ = void . keyword
|
||
|
|
||
|
whitespace :: Parser ()
|
||
|
whitespace =
|
||
|
choice [simpleWhitespace *> whitespace
|
||
|
,lineComment *> whitespace
|
||
|
,blockComment *> whitespace
|
||
|
,return ()]
|
||
|
where
|
||
|
lineComment = try (string "--")
|
||
|
*> manyTill anyChar (void (char '\n') <|> eof)
|
||
|
blockComment = try (string "/*")
|
||
|
*> manyTill anyChar (try $ string "*/")
|
||
|
simpleWhitespace = void $ many1 (oneOf " \t\n")
|
||
|
lexeme :: Parser a -> Parser a
|
||
|
lexeme p = p <* whitespace
|
||
|
comma :: Parser Char
|
||
|
comma = lexeme $ char ','
|
||
|
|
||
|
commaSep :: Parser a -> Parser [a]
|
||
|
commaSep = (`sepBy` comma)
|
||
|
|
||
|
parseExpr :: String -> Either ParseError Expr
|
||
|
parseExpr = parse (whitespace *> valueExpr <* eof) ""
|
||
|
|
||
|
-- --------------
|
||
|
|
||
|
data Assoc = AssocLeft | AssocRight | AssocNone deriving (Eq,Show)
|
||
|
|
||
|
type Fixities = [(String, (Int, Assoc))]
|
||
|
|
||
|
fixFixity :: Fixities -> Expr -> Expr
|
||
|
fixFixity fixities = fixBinOpPrecedence . fixBinOpAssociativity . fixNestedPrefPostPrec
|
||
|
where
|
||
|
fixBinOpAssociativity e = case e of
|
||
|
BinOp a op b ->
|
||
|
let a' = fixBinOpAssociativity a
|
||
|
b' = fixBinOpAssociativity b
|
||
|
def = BinOp a' op b'
|
||
|
in case (a',b') of
|
||
|
-- both
|
||
|
-- a1 op1 a2 op b1 op2 b2
|
||
|
(BinOp a1 op1 a2
|
||
|
,BinOp b1 op2 b2)
|
||
|
| Just (_p,opa) <- lookupFixity op
|
||
|
, Just (_p,op1a) <- lookupFixity op1
|
||
|
, Just (_p,op2a) <- lookupFixity op2
|
||
|
-> case (opa, op1a, op2a) of
|
||
|
(AssocRight, AssocRight, AssocRight) ->
|
||
|
BinOp a1 op1 (BinOp a2 op (BinOp b1 op2 b2))
|
||
|
(AssocLeft, AssocLeft, AssocLeft) ->
|
||
|
BinOp (BinOp (BinOp a1 op1 a2) op b1) op2 b2
|
||
|
--todo: other cases
|
||
|
_ -> def
|
||
|
-- just left side
|
||
|
(BinOp a1 op1 a2, _)
|
||
|
-- a1 op1 a2 op b'
|
||
|
| Just (_p,opa) <- lookupFixity op
|
||
|
, Just (_p,op1a) <- lookupFixity op1
|
||
|
-> case (opa, op1a) of
|
||
|
(AssocRight, AssocRight) ->
|
||
|
BinOp a1 op1 (BinOp a2 op b')
|
||
|
(AssocLeft, AssocLeft) ->
|
||
|
BinOp (BinOp a1 op1 a2) op b'
|
||
|
_ -> def
|
||
|
|
||
|
-- just right side
|
||
|
(_, BinOp b1 op2 b2)
|
||
|
-- e op b1 op2 b2
|
||
|
| Just (_p,opa) <- lookupFixity op
|
||
|
, Just (_p,op2a) <- lookupFixity op2
|
||
|
-> case (opa, op2a) of
|
||
|
(AssocRight, AssocRight) ->
|
||
|
BinOp a' op (BinOp b1 op2 b2)
|
||
|
(AssocLeft, AssocLeft) ->
|
||
|
BinOp (BinOp a' op b1) op2 b2
|
||
|
_ -> def
|
||
|
_ -> def
|
||
|
_ -> e
|
||
|
|
||
|
fixBinOpPrecedence e = case e of
|
||
|
BinOp a op b ->
|
||
|
let a' = fixBinOpPrecedence a
|
||
|
b' = fixBinOpPrecedence b
|
||
|
def = BinOp a' op b'
|
||
|
in case (a',b') of
|
||
|
-- both
|
||
|
-- a1 op1 a2 op b1 op2 b2
|
||
|
-- all equal
|
||
|
-- p > or < p1 == p2
|
||
|
-- p == p1 < or > p2
|
||
|
(BinOp a1 op1 a2
|
||
|
,BinOp b1 op2 b2)
|
||
|
| Just (p,_opa) <- lookupFixity op
|
||
|
, Just (p1,_op1a) <- lookupFixity op1
|
||
|
, Just (p2,_op2a) <- lookupFixity op2
|
||
|
-> case () of
|
||
|
-- _ | trace ("both prec " ++ show (p,p1,p2)) False -> undefined
|
||
|
_ | p == p1 && p1 == p2 -> def
|
||
|
_ | p > p1 && p1 == p2 -> BinOp a1 op1 b'
|
||
|
_ | p < p1 && p1 == p2 -> BinOp (BinOp a1 op1 a2) op b'
|
||
|
_ | p == p1 && p2 > p1 -> BinOp a' op (BinOp b1 op2 b2)
|
||
|
_ | p == p1 && p2 < p1 -> def -- todo
|
||
|
_ | otherwise -> def
|
||
|
-- just left side
|
||
|
(BinOp a1 op1 a2, _)
|
||
|
-- a1 op1 a2 op b'
|
||
|
| Just (p,_opa) <- lookupFixity op
|
||
|
, Just (p1,_op1a) <- lookupFixity op1
|
||
|
-> case () of
|
||
|
-- _ | trace ("left prec " ++ show (p,p1)) False -> undefined
|
||
|
_ | p < p1 -> {-trace "b1" $ -}BinOp (BinOp a1 op1 a2) op b'
|
||
|
| p > p1 -> {-trace "b2" $ -}BinOp a1 op1 (BinOp a2 op b')
|
||
|
| otherwise -> def
|
||
|
|
||
|
-- just right side
|
||
|
(_, BinOp b1 op2 b2)
|
||
|
-- a' op b1 op2 b2
|
||
|
| Just (p,_opa) <- lookupFixity op
|
||
|
, Just (p2,_op1a) <- lookupFixity op2
|
||
|
-> case () of
|
||
|
-- _ | trace ("right prec " ++ show (p,p2)) False -> undefined
|
||
|
_ | p > p2 -> {-trace "b1" $ -}BinOp (BinOp a' op b1) op2 b2
|
||
|
| p < p2 -> {-trace "b2" $ -}BinOp a' op (BinOp b1 op2 b2)
|
||
|
| otherwise -> {-trace "def" $ -} def
|
||
|
_ -> def
|
||
|
_ -> e
|
||
|
|
||
|
fixNestedPrefPostPrec e = case e of
|
||
|
PrefOp op a ->
|
||
|
let a' = fixNestedPrefPostPrec a
|
||
|
in case a' of
|
||
|
PostOp op1 b | Just (p,_) <- lookupFixity op
|
||
|
, Just (p1,_) <- lookupFixity op1
|
||
|
, p > p1 -> PostOp op1 (PrefOp op b)
|
||
|
_ -> PrefOp op a'
|
||
|
PostOp op a ->
|
||
|
let a' = fixNestedPrefPostPrec a
|
||
|
in case a' of
|
||
|
PrefOp op1 b | Just (p,_) <- lookupFixity op
|
||
|
, Just (p1,_) <- lookupFixity op1
|
||
|
, p > p1 -> PrefOp op1 (PostOp op b)
|
||
|
_ -> PostOp op a'
|
||
|
_ -> e
|
||
|
|
||
|
|
||
|
|
||
|
lookupFixity :: String -> Maybe (Int,Assoc)
|
||
|
lookupFixity s = maybe (trace ("didn't find " ++ s ++ "\n" ++ ppShow fixities) Nothing)
|
||
|
Just $ lookup s fixities
|
||
|
|
||
|
|
||
|
sqlFixity :: [(String, (Int, Assoc))]
|
||
|
sqlFixity = [(".", (13, AssocLeft))
|
||
|
,("[]", (12, AssocNone))
|
||
|
|
||
|
{-
|
||
|
unary + -
|
||
|
todo: split the fixity table into prefix, binary and postfix
|
||
|
|
||
|
todo: don't have explicit precedence numbers in the table??
|
||
|
-}
|
||
|
|
||
|
,("^", (10, AssocNone))]
|
||
|
++ m ["*", "/", "%"] (9, AssocLeft)
|
||
|
++ m ["+","-"] (8, AssocLeft)
|
||
|
++ m ["<", ">", "=", "<=", ">=", "<>"] (4, AssocNone)
|
||
|
++ [("is null", (3, AssocNone))
|
||
|
,("not", (2, AssocRight))
|
||
|
,("and", (1, AssocLeft))
|
||
|
,("or", (0, AssocLeft))]
|
||
|
|
||
|
where
|
||
|
m l a = map (,a) l
|
||
|
|
||
|
{-
|
||
|
-------
|
||
|
|
||
|
some simple parser tests
|
||
|
-}
|
||
|
|
||
|
data Test = Group String [Test]
|
||
|
| ParserTest String Expr
|
||
|
| FixityTest Fixities Expr Expr
|
||
|
|
||
|
parserTests :: Test
|
||
|
parserTests = Group "parserTests" $ map (uncurry ParserTest) $
|
||
|
[("a", Iden "a")
|
||
|
,("'test'", Lit "test")
|
||
|
,("34", Lit "34")
|
||
|
,("f()", App "f" [])
|
||
|
,("f(3)", App "f" [Lit "3"])
|
||
|
,("(7)", Parens (Lit "7"))
|
||
|
,("a + 3", BinOp (Iden "a") "+" (Lit "3"))
|
||
|
,("1 + 2 + 3", BinOp (BinOp (Lit "1") "+" (Lit "2")) "+" (Lit "3"))
|
||
|
|
||
|
,("a or b", BinOp (Iden "a") "or" (Iden "b"))
|
||
|
,("-1", PrefOp "-" (Lit "1"))
|
||
|
,("not a", PrefOp "not" (Iden "a"))
|
||
|
,("not not a", PrefOp "not" (PrefOp "not" (Iden "a")))
|
||
|
,("a is null", PostOp "is null" (Iden "a"))
|
||
|
,("a is null is null", PostOp "is null" (PostOp "is null" (Iden "a")))
|
||
|
,("-a+3", BinOp (PrefOp "-" (Iden "a")) "+" (Lit "3"))
|
||
|
,("a is null and b is null", BinOp (PostOp "is null" (Iden "a"))
|
||
|
"and"
|
||
|
(PostOp "is null" (Iden "b")))
|
||
|
]
|
||
|
|
||
|
makeParserTest :: String -> Expr -> T.TestTree
|
||
|
makeParserTest s e = H.testCase s $ do
|
||
|
let a = parseExpr s
|
||
|
if (Right e == a)
|
||
|
then putStrLn $ s ++ " OK"
|
||
|
else putStrLn $ "bad parse " ++ s ++ " " ++ show a
|
||
|
|
||
|
{-
|
||
|
------
|
||
|
|
||
|
fixity checks
|
||
|
|
||
|
test cases:
|
||
|
-}
|
||
|
|
||
|
|
||
|
fixityTests :: Test
|
||
|
fixityTests = Group "fixityTests" $
|
||
|
map (\(f,s,e) -> FixityTest f s e) $
|
||
|
[
|
||
|
|
||
|
-- 2 bin ops wrong associativity left + null versions
|
||
|
|
||
|
(sqlFixity
|
||
|
,i "a" `plus` (i "b" `plus` i "c")
|
||
|
,(i "a" `plus` i "b") `plus` i "c")
|
||
|
,(sqlFixity
|
||
|
,(i "a" `plus` i "b") `plus` i "c"
|
||
|
,(i "a" `plus` i "b") `plus` i "c")
|
||
|
|
||
|
-- 2 bin ops wrong associativity right
|
||
|
|
||
|
,(timesRight
|
||
|
,i "a" `times` (i "b" `times` i "c")
|
||
|
,i "a" `times` (i "b" `times` i "c"))
|
||
|
,(timesRight
|
||
|
,(i "a" `times` i "b") `times` i "c"
|
||
|
,i "a" `times` (i "b" `times` i "c"))
|
||
|
|
||
|
|
||
|
-- 2 bin ops wrong precedence left
|
||
|
|
||
|
,(sqlFixity
|
||
|
,i "a" `plus` (i "b" `times` i "c")
|
||
|
,i "a" `plus` (i "b" `times` i "c"))
|
||
|
|
||
|
,(sqlFixity
|
||
|
,(i "a" `plus` i "b") `times` i "c"
|
||
|
,i "a" `plus` (i "b" `times` i "c"))
|
||
|
|
||
|
-- 2 bin ops wrong precedence right
|
||
|
|
||
|
,(sqlFixity
|
||
|
,(i "a" `times` i "b") `plus` i "c"
|
||
|
,(i "a" `times` i "b") `plus` i "c")
|
||
|
|
||
|
,(sqlFixity
|
||
|
,i "a" `times` (i "b" `plus` i "c")
|
||
|
,(i "a" `times` i "b") `plus` i "c")
|
||
|
|
||
|
{-
|
||
|
a + b * c + d
|
||
|
a * b + c * d
|
||
|
|
||
|
check all variations
|
||
|
-}
|
||
|
|
||
|
] ++
|
||
|
(let t = (i "a" `plus` i "b")
|
||
|
`times`
|
||
|
(i "c" `plus` i "d")
|
||
|
trs = generateTrees $ splitTree t
|
||
|
in [(sqlFixity, x
|
||
|
,i "a" `plus` (i "b" `times` i "c")
|
||
|
`plus` i "d")
|
||
|
| x <- trs])
|
||
|
++
|
||
|
(let t = (i "a" `times` i "b")
|
||
|
`plus`
|
||
|
(i "c" `times` i "d")
|
||
|
trs = generateTrees $ splitTree t
|
||
|
in [(sqlFixity, x
|
||
|
,(i "a" `times` i "b")
|
||
|
`plus`
|
||
|
(i "c" `times` i "d"))
|
||
|
| x <- trs])
|
||
|
|
||
|
|
||
|
++ [
|
||
|
|
||
|
-- prefix then postfix wrong precedence
|
||
|
|
||
|
([("+", (9, AssocNone))
|
||
|
,("is null", (3, AssocNone))]
|
||
|
,PrefOp "+" (PostOp "is null" (i "a"))
|
||
|
,PostOp "is null" (PrefOp "+" (i "a")))
|
||
|
|
||
|
,([("+", (9, AssocNone))
|
||
|
,("is null", (3, AssocNone))]
|
||
|
,PostOp "is null" (PrefOp "+" (i "a"))
|
||
|
,PostOp "is null" (PrefOp "+" (i "a")))
|
||
|
|
||
|
,([("+", (3, AssocNone))
|
||
|
,("is null", (9, AssocNone))]
|
||
|
,PrefOp "+" (PostOp "is null" (i "a"))
|
||
|
,PrefOp "+" (PostOp "is null" (i "a")))
|
||
|
|
||
|
,([("+", (3, AssocNone))
|
||
|
,("is null", (9, AssocNone))]
|
||
|
,PostOp "is null" (PrefOp "+" (i "a"))
|
||
|
,PrefOp "+" (PostOp "is null" (i "a")))
|
||
|
|
||
|
{-
|
||
|
3-way unary operator movement:
|
||
|
take a starting point and generate variations
|
||
|
|
||
|
postfix on first arg of binop (cannot move) make sure precedence wants
|
||
|
it to move
|
||
|
|
||
|
prefix on second arg of binop (cannot move)
|
||
|
|
||
|
prefix on binop, precedence wrong
|
||
|
postfix on binop precedence wrong
|
||
|
prefix on first arg of binop, precedence wrong
|
||
|
postfix on second arg of binop, precedence wrong
|
||
|
|
||
|
ambiguous fixity tests
|
||
|
|
||
|
sanity check: parens stops rearrangement
|
||
|
|
||
|
check nesting 1 + f(expr)
|
||
|
-}
|
||
|
|
||
|
]
|
||
|
where
|
||
|
plus a b = BinOp a "+" b
|
||
|
times a b = BinOp a "*" b
|
||
|
i a = Iden a
|
||
|
timesRight = [("*", (9, AssocRight))]
|
||
|
|
||
|
-- testCase
|
||
|
|
||
|
makeFixityTest :: Fixities -> Expr -> Expr -> T.TestTree
|
||
|
makeFixityTest fs s e = H.testCase (show s) $ do
|
||
|
let s' = fixFixity fs s
|
||
|
H.assertEqual "" s' e
|
||
|
{-if (s' == e)
|
||
|
then putStrLn $ show s ++ " OK"
|
||
|
else putStrLn $ "ERROR\nstart: " ++ show s ++ "\nfixed: " ++ show s' ++ "\nshould be: " ++ show e-}
|
||
|
|
||
|
tests :: Test
|
||
|
tests = Group "Tests" [parserTests, fixityTests]
|
||
|
|
||
|
makeTest :: Test -> T.TestTree
|
||
|
makeTest (Group n ts) = T.testGroup n $ map makeTest ts
|
||
|
makeTest (ParserTest s e) = makeParserTest s e
|
||
|
makeTest (FixityTest f s e) = makeFixityTest f s e
|
||
|
|
||
|
{-
|
||
|
--------
|
||
|
|
||
|
> tests :: T.TestTree
|
||
|
> tests = T.testGroup "Tests" $ map makeFixityTest fixityTests
|
||
|
-}
|
||
|
|
||
|
main :: IO ()
|
||
|
main = T.defaultMain $ makeTest tests
|
||
|
{-do
|
||
|
mapM_ checkTest tests
|
||
|
mapM_ checkFixity fixityTests
|
||
|
let plus a b = BinOp a "+" b
|
||
|
times a b = BinOp a "*" b
|
||
|
i a = Iden a
|
||
|
let t = (i "a" `plus` i "b")
|
||
|
`times`
|
||
|
(i "c" `plus` i "d")
|
||
|
spl = splitTree t
|
||
|
trs = generateTrees spl
|
||
|
--putStrLn $ "\nSplit\n"
|
||
|
--putStrLn $ ppShow (fst spl, length $ snd spl)
|
||
|
--putStrLn $ show $ length trs
|
||
|
--putStrLn $ "\nTrees\n"
|
||
|
--putStrLn $ intercalate "\n" $ map show trs
|
||
|
return ()-}
|
||
|
|
||
|
{-
|
||
|
generating trees
|
||
|
|
||
|
1. tree -> list
|
||
|
val op val op val op ...
|
||
|
(has to be two lists?
|
||
|
|
||
|
generate variations:
|
||
|
pick numbers from 0 to n - 1 (n is the number of ops)
|
||
|
choose the op at this position to be the root
|
||
|
recurse on the two sides
|
||
|
-}
|
||
|
|
||
|
splitTree :: Expr -> ([Expr], [Expr->Expr->Expr])
|
||
|
splitTree (BinOp a op b) = let (x,y) = splitTree a
|
||
|
(z,w) = splitTree b
|
||
|
in (x++z, y++ [\a b -> BinOp a op b] ++ w)
|
||
|
splitTree x = ([x],[])
|
||
|
|
||
|
|
||
|
|
||
|
generateTrees :: ([Expr], [Expr->Expr->Expr]) -> [Expr]
|
||
|
generateTrees (es,ops) | length es /= length ops + 1 =
|
||
|
error $ "mismatch in lengths " ++ show (length es, length ops)
|
||
|
++"\n" ++ ppShow es ++ "\n"
|
||
|
generateTrees ([a,b], [op]) = [op a b]
|
||
|
generateTrees ([a], []) = [a]
|
||
|
generateTrees (vs, ops) =
|
||
|
let n = length ops
|
||
|
in --trace ("generating " ++ show (length vs, n) ++ "trees\n") $
|
||
|
concat $ flip map [0..n-1] $ \m ->
|
||
|
let (v1,v2) = splitAt (m + 1) vs
|
||
|
(ops1,op':ops2) = splitAt m ops
|
||
|
r = [op' t u | t <- generateTrees (v1,ops1)
|
||
|
, u <- generateTrees (v2,ops2)]
|
||
|
in -- trace ("generated " ++ show (length r) ++ " trees")
|
||
|
r
|
||
|
generateTrees ([],[]) = []
|
||
|
|
||
|
|
||
|
|