1
Fork 0

Clean up the lens space section

This commit is contained in:
prescientmoon 2025-03-21 15:08:40 +01:00
parent b23127a84b
commit 72c9de5010
Signed by: prescientmoon
SSH key fingerprint: SHA256:UUF9JT2s8Xfyv76b8ZuVL7XrmimH4o49p4b+iexbVH4
3 changed files with 22 additions and 16 deletions

BIN
main.pdf

Binary file not shown.

View file

@ -24,12 +24,13 @@
\DeclareMathOperator{\lensop}{L}
\DeclareMathOperator{\rotmatop}{R}
\DeclareMathOperator{\soop}{SO}
\newcommand*{\lens}[2]{\textcolor{darkyellow}{\lensop\left(\textcolor{black}{#1},\textcolor{black}{#2}\right)}} %
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
\newcommand*{\so}[1]{\soop\left(#1\right)}
\newcommand*{\rotmat}[1]{\textcolor{red}{\rotmatop\left(\textcolor{black}{#1}\right)}}
\renewcommand{\S}{\mathbb{S}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\sparkles}{\includegraphics[height=0.9em]{sparkles.png}}
\newcommand{\ghostzero}{\textcolor{lightgray}{0}}
% cool color

View file

@ -27,30 +27,35 @@
\end{itemize}
\end{frame}
\begin{frame}{Lens Spaces}
\begin{frame}{Lens Spaces — the Explicit Construction}
\begin{itemize}
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
\item They cannot be distinguished by their homotopy group alone.
\end{itemize}
\end{frame}
\begin{frame}{Lens Spaces — the Explicit Construction}
\pause
\begin{definition}[Lens space]
Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$
Given coprime $p, z \in \mathbb Z$, we define
\begin{align*}
\lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle,
\lens p q \coloneq \S^3/\langle M \rangle,
\end{align*}
where $\langle M_{q,s} \rangle$ is the group generated by
where $\langle M \rangle$ is the group generated by
\begin{align*}
M_{q,s} \coloneq
\begin{pmatrix}
\rotmat{2 \pi s_1 / q} & & & \\
& \rotmat{2 \pi s_2 / q} & & \\
& & \ddots & \\
& & & \rotmat{2 \pi s_n / q}
\end{pmatrix}.
M \coloneq
\begin{bmatrix*}[r]
\cos{(2 \pi / p)} & \sin{(-2 \pi / p)} & \ghostzero & \ghostzero \\
\sin{(2 \pi / p)} & \cos{(2 \pi / p)} & \ghostzero & \ghostzero \\
\ghostzero & \ghostzero & \cos{(2 \pi q / p)} & \sin{(-2 \pi q / p)} \\
\ghostzero & \ghostzero & \sin{(2 \pi q / p)} & \cos{(2 \pi q / p)}
\end{bmatrix*}.
% \begin{pmatrix}
% \rotmat{2 \pi s_1 / q} & & & \\
% & \rotmat{2 \pi s_2 / q} & & \\
% & & \ddots & \\
% & & & \rotmat{2 \pi s_n / q}
% \end{pmatrix}.
\end{align*}
\end{definition}
\pause
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
% \pause
% In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
\end{frame}