Clean up the lens space section
This commit is contained in:
parent
b23127a84b
commit
72c9de5010
3
main.tex
3
main.tex
|
@ -24,12 +24,13 @@
|
|||
\DeclareMathOperator{\lensop}{L}
|
||||
\DeclareMathOperator{\rotmatop}{R}
|
||||
\DeclareMathOperator{\soop}{SO}
|
||||
\newcommand*{\lens}[2]{\textcolor{darkyellow}{\lensop\left(\textcolor{black}{#1},\textcolor{black}{#2}\right)}} %
|
||||
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
|
||||
\newcommand*{\so}[1]{\soop\left(#1\right)}
|
||||
\newcommand*{\rotmat}[1]{\textcolor{red}{\rotmatop\left(\textcolor{black}{#1}\right)}}
|
||||
\renewcommand{\S}{\mathbb{S}}
|
||||
\newcommand{\R}{\mathbb{R}}
|
||||
\newcommand{\sparkles}{\includegraphics[height=0.9em]{sparkles.png}}
|
||||
\newcommand{\ghostzero}{\textcolor{lightgray}{0}}
|
||||
|
||||
% cool color
|
||||
|
||||
|
|
|
@ -27,30 +27,35 @@
|
|||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Lens Spaces}
|
||||
\begin{frame}{Lens Spaces — the Explicit Construction}
|
||||
\begin{itemize}
|
||||
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
|
||||
\item They cannot be distinguished by their homotopy group alone.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\begin{frame}{Lens Spaces — the Explicit Construction}
|
||||
\pause
|
||||
\begin{definition}[Lens space]
|
||||
Given $q \in \mathbb Z$ and $s \in \mathbb Z ^n$ elementwise coprime with $q$
|
||||
Given coprime $p, z \in \mathbb Z$, we define
|
||||
\begin{align*}
|
||||
\lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle,
|
||||
\lens p q \coloneq \S^3/\langle M \rangle,
|
||||
\end{align*}
|
||||
where $\langle M_{q,s} \rangle$ is the group generated by
|
||||
where $\langle M \rangle$ is the group generated by
|
||||
\begin{align*}
|
||||
M_{q,s} \coloneq
|
||||
\begin{pmatrix}
|
||||
\rotmat{2 \pi s_1 / q} & & & \\
|
||||
& \rotmat{2 \pi s_2 / q} & & \\
|
||||
& & \ddots & \\
|
||||
& & & \rotmat{2 \pi s_n / q}
|
||||
\end{pmatrix}.
|
||||
M \coloneq
|
||||
\begin{bmatrix*}[r]
|
||||
\cos{(2 \pi / p)} & \sin{(-2 \pi / p)} & \ghostzero & \ghostzero \\
|
||||
\sin{(2 \pi / p)} & \cos{(2 \pi / p)} & \ghostzero & \ghostzero \\
|
||||
\ghostzero & \ghostzero & \cos{(2 \pi q / p)} & \sin{(-2 \pi q / p)} \\
|
||||
\ghostzero & \ghostzero & \sin{(2 \pi q / p)} & \cos{(2 \pi q / p)}
|
||||
\end{bmatrix*}.
|
||||
% \begin{pmatrix}
|
||||
% \rotmat{2 \pi s_1 / q} & & & \\
|
||||
% & \rotmat{2 \pi s_2 / q} & & \\
|
||||
% & & \ddots & \\
|
||||
% & & & \rotmat{2 \pi s_n / q}
|
||||
% \end{pmatrix}.
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
|
||||
\pause
|
||||
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
|
||||
% \pause
|
||||
% In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
|
||||
\end{frame}
|
||||
|
|
Loading…
Reference in a new issue