1
Fork 0

Lens spaces and whatnot

This commit is contained in:
prescientmoon 2025-03-20 16:46:52 +01:00
parent 7d505992b8
commit acc7e17c17
Signed by: prescientmoon
SSH key fingerprint: SHA256:UUF9JT2s8Xfyv76b8ZuVL7XrmimH4o49p4b+iexbVH4
3 changed files with 49 additions and 12 deletions

View file

@ -13,6 +13,7 @@
\end{enumerate}
\end{frame}
\begin{comment}
\begin{frame}{Can isospectral pairs approximate your mom}
\begin{itemize}
\item One of the problems the paper studies is finding volume-maximizing isospectral pairs of spherical forms (i.e. the spaces we are interested in).
@ -28,6 +29,7 @@
\item Together with a computational search, the paper builds a table of the solutions for a bunch of dimensions. The general case is still an open question.
\end{itemize}
\end{frame}
\end{comment}
\begin{frame}{The silver lining}
\begin{itemize}

View file

@ -2,8 +2,6 @@
\usetheme{Warsaw}
\usecolortheme{lily}
% boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works
\usepackage{graphicx} % Required for inserting images
@ -20,8 +18,12 @@
\DeclareMathOperator{\divergence}{div}
\DeclareMathOperator{\lensop}{L}
\DeclareMathOperator{\rotmat}{R}
\DeclareMathOperator{\rotmatop}{R}
\DeclareMathOperator{\soop}{SO}
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
\newcommand*{\so}[1]{\soop\left(#1\right)}
\newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)}
\renewcommand{\S}{\mathbb{S}}
% cool color
@ -49,9 +51,12 @@ code-for-last-col = \color{blue}
\setbeamertemplate{headline}{%
\leavevmode%
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}%
\hspace{.5em}\strut\insertsectionhead\hfill\mbox{}%
\mbox{}\hspace{.5em}\strut\insertsectionhead\hfill%
\end{beamercolorbox}%
}
\setbeamercolor{block title}{fg=white, bg=purple!50!black}
\setbeamercolor{block body}{fg=black, bg=pink!20}
\begin{document}
@ -76,10 +81,10 @@ code-for-last-col = \color{blue}
\item 1
\item 2
\end{itemize}
\end{frame}
\include{prerequisites}
\include{isospectral}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
@ -123,7 +128,6 @@ code-for-last-col = \color{blue}
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
\caption{Graphical representation of the binary tetrahedral group
[5]}
\label{fig:binary-octahedron}
\end{figure}
\end{frame}
@ -158,7 +162,6 @@ code-for-last-col = \color{blue}
\centering
\includegraphics[width=0.6\linewidth]{DSE-Test Graph}
\caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].}
\label{fig:Decorrelated Statistical Spectrum}
\end{figure}
\end{frame}

View file

@ -1,9 +1,9 @@
\section{Prerequisites}
\begin{frame}{Introduction}
\begin{frame}{Manifolds \& Homotopy groups}
\begin{figure}[H]
\centering
\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
\caption{The prototypical example of a manifold a mug. Image source: [13]}
\caption{The prototypical example of a manifold a mug [13].}
\label{fig:mug-neighbourhoods}
\end{figure}
@ -11,11 +11,43 @@
\centering
%$ \captionsetup{width=.75\linewidth}
\includegraphics[width=0.2\linewidth]{Contractible loops.png}
\caption{Diagram showing two double tori with (non)-contractible paths. Image source[7]}
\caption{Two double tori with (non)-contractible paths [7].}
\label{fig:CoLoop}
\end{figure}
\end{frame}
\begin{frame}{Preliminaries- quotient groups (Put actual title later)}
ddgagagagaga
\begin{frame}{Quotients of the $3$-sphere}
\begin{itemize}
\item $\so 4$ is isomorphic to the isometry group of $\S^3$
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^3$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
\item This can be easily generalised to the $n$-sphere.
\end{itemize}
\end{frame}
\begin{frame}{Lens spaces}
\begin{itemize}
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
\item They cannot be distinguished by their homotopy group alone.
\end{itemize}
\end{frame}
\begin{frame}{Lens spaces — the explicit construction}
\begin{definition}[Lens space]
Given $q \in \mathbb N$ and $s \in \mathbb Z ^n$ each coprime with $q$
\begin{align*}
\lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle,
\end{align*}
where $\langle M \rangle$ is the group generated by
\begin{align*}
M_{q,s} \coloneq
\begin{pmatrix}
\rotmat{2 \pi s_1 / q} & & & \\
& \rotmat{2 \pi s_2 / q} & & \\
& & \ddots & \\
& & & \rotmat{2 \pi s_n / q}
\end{pmatrix}
\end{align*}
\end{definition}
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb \mathbb Z$.
\end{frame}