Lens spaces and whatnot
This commit is contained in:
parent
7d505992b8
commit
acc7e17c17
|
@ -13,6 +13,7 @@
|
|||
\end{enumerate}
|
||||
\end{frame}
|
||||
|
||||
\begin{comment}
|
||||
\begin{frame}{Can isospectral pairs approximate your mom}
|
||||
\begin{itemize}
|
||||
\item One of the problems the paper studies is finding volume-maximizing isospectral pairs of spherical forms (i.e. the spaces we are interested in).
|
||||
|
@ -28,6 +29,7 @@
|
|||
\item Together with a computational search, the paper builds a table of the solutions for a bunch of dimensions. The general case is still an open question.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\end{comment}
|
||||
|
||||
\begin{frame}{The silver lining}
|
||||
\begin{itemize}
|
||||
|
|
17
main.tex
17
main.tex
|
@ -2,8 +2,6 @@
|
|||
\usetheme{Warsaw}
|
||||
\usecolortheme{lily}
|
||||
|
||||
|
||||
|
||||
% boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works
|
||||
|
||||
\usepackage{graphicx} % Required for inserting images
|
||||
|
@ -20,8 +18,12 @@
|
|||
|
||||
\DeclareMathOperator{\divergence}{div}
|
||||
\DeclareMathOperator{\lensop}{L}
|
||||
\DeclareMathOperator{\rotmat}{R}
|
||||
\DeclareMathOperator{\rotmatop}{R}
|
||||
\DeclareMathOperator{\soop}{SO}
|
||||
\newcommand*{\lens}[2]{\lensop\left(#1,#2\right)} %
|
||||
\newcommand*{\so}[1]{\soop\left(#1\right)}
|
||||
\newcommand*{\rotmat}[1]{\rotmatop\left(#1\right)}
|
||||
\renewcommand{\S}{\mathbb{S}}
|
||||
|
||||
% cool color
|
||||
|
||||
|
@ -49,9 +51,12 @@ code-for-last-col = \color{blue}
|
|||
\setbeamertemplate{headline}{%
|
||||
\leavevmode%
|
||||
\begin{beamercolorbox}[wd=\paperwidth,ht=2.5ex,dp=1.5ex]{section in head/foot}%
|
||||
\hspace{.5em}\strut\insertsectionhead\hfill\mbox{}%
|
||||
\mbox{}\hspace{.5em}\strut\insertsectionhead\hfill%
|
||||
\end{beamercolorbox}%
|
||||
}
|
||||
|
||||
\setbeamercolor{block title}{fg=white, bg=purple!50!black}
|
||||
\setbeamercolor{block body}{fg=black, bg=pink!20}
|
||||
\begin{document}
|
||||
|
||||
|
||||
|
@ -76,10 +81,10 @@ code-for-last-col = \color{blue}
|
|||
\item 1
|
||||
\item 2
|
||||
\end{itemize}
|
||||
|
||||
\end{frame}
|
||||
|
||||
\include{prerequisites}
|
||||
|
||||
\include{isospectral}
|
||||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
|
@ -123,7 +128,6 @@ code-for-last-col = \color{blue}
|
|||
\includegraphics[width=0.4\linewidth]{binary-octahedron.png}
|
||||
\caption{Graphical representation of the binary tetrahedral group
|
||||
[5]}
|
||||
\label{fig:binary-octahedron}
|
||||
\end{figure}
|
||||
|
||||
\end{frame}
|
||||
|
@ -158,7 +162,6 @@ code-for-last-col = \color{blue}
|
|||
\centering
|
||||
\includegraphics[width=0.6\linewidth]{DSE-Test Graph}
|
||||
\caption{The decorrelated band mean spectrum obtained by the seven-year WMAP data [9].}
|
||||
\label{fig:Decorrelated Statistical Spectrum}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
|
|
|
@ -1,9 +1,9 @@
|
|||
\section{Prerequisites}
|
||||
\begin{frame}{Introduction}
|
||||
\begin{frame}{Manifolds \& Homotopy groups}
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
|
||||
\caption{The prototypical example of a manifold a mug. Image source: [13]}
|
||||
\caption{The prototypical example of a manifold a mug [13].}
|
||||
\label{fig:mug-neighbourhoods}
|
||||
\end{figure}
|
||||
|
||||
|
@ -11,11 +11,43 @@
|
|||
\centering
|
||||
%$ \captionsetup{width=.75\linewidth}
|
||||
\includegraphics[width=0.2\linewidth]{Contractible loops.png}
|
||||
\caption{Diagram showing two double tori with (non)-contractible paths. Image source[7]}
|
||||
\caption{Two double tori with (non)-contractible paths [7].}
|
||||
\label{fig:CoLoop}
|
||||
\end{figure}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Preliminaries- quotient groups (Put actual title later)}
|
||||
ddgagagagaga
|
||||
\begin{frame}{Quotients of the $3$-sphere}
|
||||
\begin{itemize}
|
||||
\item $\so 4$ is isomorphic to the isometry group of $\S^3$
|
||||
\item Subgroups $\Gamma \leqslant \so 4$ define equivalence classes of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^3$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
|
||||
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
|
||||
\item This can be easily generalised to the $n$-sphere.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
|
||||
\begin{frame}{Lens spaces}
|
||||
\begin{itemize}
|
||||
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
|
||||
\item They cannot be distinguished by their homotopy group alone.
|
||||
\end{itemize}
|
||||
\end{frame}
|
||||
\begin{frame}{Lens spaces — the explicit construction}
|
||||
\begin{definition}[Lens space]
|
||||
Given $q \in \mathbb N$ and $s \in \mathbb Z ^n$ each coprime with $q$
|
||||
\begin{align*}
|
||||
\lens q s \coloneq \S^{2n-1}/\langle M_{q,s} \rangle,
|
||||
\end{align*}
|
||||
where $\langle M \rangle$ is the group generated by
|
||||
\begin{align*}
|
||||
M_{q,s} \coloneq
|
||||
\begin{pmatrix}
|
||||
\rotmat{2 \pi s_1 / q} & & & \\
|
||||
& \rotmat{2 \pi s_2 / q} & & \\
|
||||
& & \ddots & \\
|
||||
& & & \rotmat{2 \pi s_n / q}
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
\end{definition}
|
||||
|
||||
In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb \mathbb Z$.
|
||||
\end{frame}
|
||||
|
|
Loading…
Reference in a new issue