1
Fork 0

Update on Overleaf.

This commit is contained in:
Bela Gabriel Schneider 2025-03-20 13:50:04 +00:00 committed by node
parent 7d505992b8
commit f7a05baed6

View file

@ -84,10 +84,10 @@ code-for-last-col = \color{blue}
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
\begin{itemize}
\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
\item Helmholtz equation on $\textcolor{blue}{M}$ given by
$$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
$$(\Delta + E_\textcolor{red} {\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number