Update on Overleaf.
This commit is contained in:
parent
7d505992b8
commit
f7a05baed6
4
main.tex
4
main.tex
|
@ -84,10 +84,10 @@ code-for-last-col = \color{blue}
|
|||
|
||||
\begin{frame}[fragile]{CMB Anisotropy of Homogeneous Spherical Spaces}
|
||||
\begin{itemize}
|
||||
\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$ finite
|
||||
\item Manifolds $\textcolor{blue}{M} := \mathbb{S}^3 /_ \sim$ where $\sim $ identifies the orbits of finite $H \leq SO(4)$
|
||||
|
||||
\item Helmholtz equation on $\textcolor{blue}{M}$ given by
|
||||
$$(\Delta + E_\textcolor{red}{\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
|
||||
$$(\Delta + E_\textcolor{red} {\beta}^\textcolor{blue}{M})\psi_\textcolor{red}{\beta}^{\textcolor{blue}{M}, i} = 0$$
|
||||
|
||||
\item In fact $E_\textcolor{red}{\beta}^m = \textcolor{red}{\beta}^2-1$ for $\textcolor{red}{\beta} \in \mathbb{N}$ we call $\textcolor{red}{\beta}$ a wave number
|
||||
|
||||
|
|
Loading…
Reference in a new issue