2025-03-20 14:38:38 +01:00
\section { Prerequisites}
2025-03-21 13:56:41 +01:00
\begin { frame} { Manifolds \& Homotopy Groups}
2025-03-20 14:38:38 +01:00
\begin { figure} [H]
\centering
\includegraphics [width=0.5\linewidth] { mug-neighbourhoods.png}
2025-03-21 15:01:05 +01:00
\caption { The prototypical example of a manifold -- a mug [13].}
2025-03-20 14:38:38 +01:00
\label { fig:mug-neighbourhoods}
\end { figure}
2025-03-21 13:05:31 +01:00
\pause
2025-03-20 14:38:38 +01:00
\begin { figure} [H]
\centering
%$ \captionsetup{width=.75\linewidth}
\includegraphics [width=0.2\linewidth] { Contractible loops.png}
2025-03-20 16:46:52 +01:00
\caption { Two double tori with (non)-contractible paths [7].}
2025-03-20 14:38:38 +01:00
\label { fig:CoLoop}
\end { figure}
\end { frame}
2025-03-20 16:46:52 +01:00
\begin { frame} { Quotients of the $ 3 $ -sphere}
\begin { itemize}
2025-03-21 11:46:55 +01:00
\item $ \so 4 $ is isomorphic to the isometry group of $ \S ^ 3 $ .
2025-03-21 13:41:01 +01:00
\item Subgroups $ \Gamma \leqslant \so 4 $ define \textcolor { darkyellow} { equivalence classes} of orbits on $ \S ^ 3 $ by the standard action of $ \so 4 $ on $ \R ^ 4 $ , i.e. $ x \sim y $ iff $ x = My $ for some $ M \in \Gamma $ .
2025-03-21 13:05:31 +01:00
\pause
2025-03-20 16:46:52 +01:00
\item The obtain space is (\emph { sometimes} ) a manifold. In particular, it is well defined and spherical for finite $ \Gamma $ .
2025-03-21 13:41:01 +01:00
\item This can be easily generalized to the $ n $ -sphere.
2025-03-20 16:46:52 +01:00
\end { itemize}
\end { frame}
2025-03-21 15:08:51 +01:00
\begin { frame} { Lens Spaces}
2025-03-20 16:46:52 +01:00
\begin { itemize}
\item Lens spaces are obtained by taking the quotient of some $ n $ -sphere by a cyclic group.
\item They cannot be distinguished by their homotopy group alone.
\end { itemize}
2025-03-21 15:08:40 +01:00
\pause
2025-03-20 16:46:52 +01:00
\begin { definition} [Lens space]
2025-03-21 15:08:40 +01:00
Given coprime $ p, z \in \mathbb Z $ , we define
2025-03-20 16:46:52 +01:00
\begin { align*}
2025-03-21 15:08:40 +01:00
\lens p q \coloneq \S ^ 3/\langle M \rangle ,
2025-03-20 16:46:52 +01:00
\end { align*}
2025-03-21 15:08:40 +01:00
where $ \langle M \rangle $ is the group generated by
2025-03-20 16:46:52 +01:00
\begin { align*}
2025-03-21 15:08:40 +01:00
M \coloneq
\begin { bmatrix*} [r]
\cos { (2 \pi / p)} & \sin { (-2 \pi / p)} & \ghostzero & \ghostzero \\
\sin { (2 \pi / p)} & \cos { (2 \pi / p)} & \ghostzero & \ghostzero \\
\ghostzero & \ghostzero & \cos { (2 \pi q / p)} & \sin { (-2 \pi q / p)} \\
\ghostzero & \ghostzero & \sin { (2 \pi q / p)} & \cos { (2 \pi q / p)}
\end { bmatrix*} .
% \begin{pmatrix}
% \rotmat{2 \pi s_1 / q} & & & \\
% & \rotmat{2 \pi s_2 / q} & & \\
% & & \ddots & \\
% & & & \rotmat{2 \pi s_n / q}
% \end{pmatrix}.
2025-03-20 16:46:52 +01:00
\end { align*}
\end { definition}
2025-03-21 15:08:40 +01:00
% \pause
% In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
2025-03-20 14:38:38 +01:00
\end { frame}