62 lines
2.5 KiB
TeX
62 lines
2.5 KiB
TeX
\section{Prerequisites}
|
|
\begin{frame}{Manifolds \& Homotopy Groups}
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=0.5\linewidth]{mug-neighbourhoods.png}
|
|
\caption{The prototypical example of a manifold -- a mug [13].}
|
|
\label{fig:mug-neighbourhoods}
|
|
\end{figure}
|
|
\pause
|
|
|
|
\begin{figure}[H]
|
|
\centering
|
|
%$ \captionsetup{width=.75\linewidth}
|
|
\includegraphics[width=0.2\linewidth]{Contractible loops.png}
|
|
\caption{Two double tori with (non)-contractible paths [7].}
|
|
\label{fig:CoLoop}
|
|
\end{figure}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Quotients of the $3$-sphere}
|
|
\begin{itemize}
|
|
\item $\so 4$ is isomorphic to the isometry group of $\S^3$.
|
|
\item Subgroups $\Gamma \leqslant \so 4$ define \textcolor{darkyellow}{equivalence classes} of orbits on $\S^3$ by the standard action of $\so 4$ on $\R^4$, i.e. $x \sim y$ iff $x = My$ for some $M \in \Gamma$.
|
|
\pause
|
|
\item The obtain space is (\emph{sometimes}) a manifold. In particular, it is well defined and spherical for finite $\Gamma$.
|
|
\item This can be easily generalized to the $n$-sphere.
|
|
\end{itemize}
|
|
\end{frame}
|
|
|
|
\begin{frame}{Lens Spaces}
|
|
\begin{itemize}
|
|
\item Lens spaces are obtained by taking the quotient of some $n$-sphere by a cyclic group.
|
|
\item They cannot be distinguished by their homotopy group alone.
|
|
\end{itemize}
|
|
\pause
|
|
\begin{definition}[Lens space]
|
|
Given coprime $p, z \in \mathbb Z$, we define
|
|
\begin{align*}
|
|
\lens p q \coloneq \S^3/\langle M \rangle,
|
|
\end{align*}
|
|
where $\langle M \rangle$ is the group generated by
|
|
\begin{align*}
|
|
M \coloneq
|
|
\begin{bmatrix*}[r]
|
|
\cos{(2 \pi / p)} & \sin{(-2 \pi / p)} & \ghostzero & \ghostzero \\
|
|
\sin{(2 \pi / p)} & \cos{(2 \pi / p)} & \ghostzero & \ghostzero \\
|
|
\ghostzero & \ghostzero & \cos{(2 \pi q / p)} & \sin{(-2 \pi q / p)} \\
|
|
\ghostzero & \ghostzero & \sin{(2 \pi q / p)} & \cos{(2 \pi q / p)}
|
|
\end{bmatrix*}.
|
|
% \begin{pmatrix}
|
|
% \rotmat{2 \pi s_1 / q} & & & \\
|
|
% & \rotmat{2 \pi s_2 / q} & & \\
|
|
% & & \ddots & \\
|
|
% & & & \rotmat{2 \pi s_n / q}
|
|
% \end{pmatrix}.
|
|
\end{align*}
|
|
\end{definition}
|
|
|
|
% \pause
|
|
% In the $\S^3$ case, we denote $\lens p q \coloneq \lens p {(1, q)}$ for coprime $p, q \in \mathbb Z$.
|
|
\end{frame}
|