2025-03-20 13:49:15 +01:00
\documentclass { beamer}
2025-03-20 13:51:38 +01:00
\usetheme { Warsaw}
2025-03-21 11:46:55 +01:00
\usepackage { amsmath, amssymb}
2025-03-20 13:49:15 +01:00
\usecolortheme { lily}
2025-03-21 13:12:48 +01:00
\setbeamertemplate { navigation symbols} { }
2025-03-20 13:49:15 +01:00
2025-03-21 13:32:21 +01:00
2025-03-21 15:20:01 +01:00
2025-03-20 13:49:15 +01:00
% boadilla seems to be the only one with enough space for stuff.compile it now it is very toxic but works
\usepackage { graphicx} % Required for inserting images
\usepackage { caption}
\usepackage { subcaption}
\usepackage { tikz}
\usepackage { pgfplots}
\usepackage { verbatim}
2025-03-20 14:26:31 +01:00
\usepackage { mathtools}
2025-03-21 13:36:07 +01:00
2025-03-20 13:49:15 +01:00
\pgfplotsset { compat = newest}
\usetikzlibrary { matrix}
\usepackage [dvipsnames] { xcolor}
\usetikzlibrary { perspective}
2025-03-20 14:26:31 +01:00
\DeclareMathOperator { \divergence } { div}
\DeclareMathOperator { \lensop } { L}
2025-03-20 16:46:52 +01:00
\DeclareMathOperator { \rotmatop } { R}
\DeclareMathOperator { \soop } { SO}
2025-03-21 15:08:40 +01:00
\newcommand * { \lens } [2]{ \lensop \left (#1,#2\right )} %
2025-03-20 16:46:52 +01:00
\newcommand * { \so } [1]{ \soop \left (#1\right )}
2025-03-21 13:23:14 +01:00
\newcommand * { \rotmat } [1]{ \textcolor { red} { \rotmatop \left (\textcolor { black} { #1} \right )} }
2025-03-20 16:46:52 +01:00
\renewcommand { \S } { \mathbb { S} }
2025-03-20 18:17:19 +01:00
\newcommand { \R } { \mathbb { R} }
2025-03-21 13:36:07 +01:00
\newcommand { \sparkles } { \includegraphics [height=0.9em] { sparkles.png} }
2025-03-21 15:08:40 +01:00
\newcommand { \ghostzero } { \textcolor { lightgray} { 0} }
2025-03-20 14:26:31 +01:00
2025-03-20 13:49:15 +01:00
% cool color
\usepackage { xcolor}
\usepackage { nicematrix}
\NiceMatrixOptions {
code-for-first-row = \color { red} ,
code-for-last-row = \color { blue} ,
code-for-first-col = \color { blue} ,
code-for-last-col = \color { blue}
}
2025-03-21 13:57:16 +01:00
\title { Computing CMB Temperature Fluctuations for Spherical Spaces}
2025-03-20 13:49:15 +01:00
\author { Adriel Matei, Béla Schneider, Javier Vela, Juš Kocutar}
2025-03-21 15:01:05 +01:00
\institute { University of Groningen}
2025-03-20 13:49:15 +01:00
2025-03-20 13:51:38 +01:00
\date { March 24, 2025}
2025-03-20 13:49:15 +01:00
\DeclareMathOperator { \cl } { cl}
\DeclareMathOperator { \rank } { r}
2025-03-20 14:38:38 +01:00
% Define custom headline
\setbeamertemplate { headline} { %
\leavevmode %
\begin { beamercolorbox} [wd=\paperwidth ,ht=2.5ex,dp=1.5ex]{ section in head/foot} %
2025-03-21 13:36:07 +01:00
\mbox { } \hspace { .5em} \strut \insertsectionhead \mbox { } \hfill \strut { \insertframenumber /\inserttotalframenumber } \mbox { } \strut \hspace { .5em} \mbox { } %
2025-03-20 14:38:38 +01:00
\end { beamercolorbox} %
}
2025-03-20 16:46:52 +01:00
\setbeamercolor { block title} { fg=white, bg=purple!50!black}
\setbeamercolor { block body} { fg=black, bg=pink!20}
2025-03-20 17:28:21 +01:00
\setbeamercolor { titlebox} { fg=black,bg=white}
2025-03-21 12:55:41 +01:00
2025-03-21 13:11:10 +01:00
\definecolor { silver} { RGB} { 192, 192, 192}
2025-03-21 13:23:14 +01:00
\definecolor { darkyellow} { RGB} { 186, 142, 35}
2025-03-21 13:11:10 +01:00
2025-03-20 17:28:21 +01:00
\begin { document}
2025-03-20 14:38:38 +01:00
\section { Introduction}
2025-03-20 14:26:31 +01:00
2025-03-20 17:28:50 +01:00
{
\usebackgroundtemplate { \includegraphics [height=\paperheight] { cmb.png} }
\begin { frame}
2025-03-21 12:55:41 +01:00
\begin { beamercolorbox} [center]{ titlebox}
2025-03-20 17:28:50 +01:00
\titlepage
\end { beamercolorbox}
\end { frame}
}
2025-03-20 13:49:15 +01:00
2025-03-20 14:38:38 +01:00
\include { prerequisites}
2025-03-20 14:26:31 +01:00
\include { isospectral}
2025-03-21 12:55:41 +01:00
\section { CMB Anisotropy of Spherical Spaces}
2025-03-21 11:46:55 +01:00
\begin { frame} [fragile]{ Homogeneous Spherical Spaces}
2025-03-20 14:26:31 +01:00
\begin { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 15:21:38 +01:00
\item Finite subgroup $ \Gamma \leqslant \so 4 . $
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 11:46:55 +01:00
\item The Helmholtz equation on $ \textcolor { blue } { M } $ has the spectrum of the underlying manifold as its solutions, and is given by
2025-03-20 17:06:00 +01:00
\begin { align*}
2025-03-20 18:18:44 +01:00
(\Delta + E_ { \textcolor { red} { \beta } } ^ { \textcolor { blue} { M} } )\psi _ { \textcolor { red} { \beta } } ^ { { \textcolor { blue} { M} } , i} = 0.
2025-03-20 17:06:00 +01:00
\end { align*}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 15:01:05 +01:00
\item In fact $ E _ { \textcolor { red } { \beta } } ^ M = { \textcolor { red } { \beta } } ^ 2 - 1 $ for $ \textcolor { red } { \beta } \in \mathbb { N } $ . We call $ \textcolor { red } { \beta } $ a wave number.
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 11:46:55 +01:00
\item The set of all possible wave numbers [for which a nonzero solution exists] depends on $ \Gamma $ - usually a proper subset of $ \mathbb { { N } } $ .
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 13:21:43 +01:00
\item Solutions to the Helmholtz equation are calculated for each $ \Gamma $ and CMB anisotropy $ \textcolor { purple } { \frac { \delta T } { T } } $ computed as a sum of spherical harmonics.
2025-03-20 14:26:31 +01:00
\end { itemize}
2025-03-20 13:49:15 +01:00
\end { frame}
\begin { comment}
2025-03-20 13:51:38 +01:00
2025-03-20 13:49:15 +01:00
\begin { frame} [fragile]{ CMB Anisotropy of Homogeneous Spherical Spaces}
2025-03-20 14:26:31 +01:00
\begin { itemize}
\item If $ H = \{ 1 \} $ the set of wave numbers is $ \mathbb { N } $
\item If $ H = \mathbb Z / m \mathbb Z $ for odd $ m $ the set of wave numbers is $$ \{ 1 , 3 , \cdots , m \} \cup \{ m + 1 , m + 2 , m + 3 , \cdots \} . $$
\item If $ H = O ^ * $ , the binary tetrahedral group --- a subgroup of $ SO ( 4 ) $ of size 24, the set of wave numbers is $$ \{ 1 , 7 , 9 \} \cup \{ 13 , 15 , 17 , \cdots \} . $$
\end { itemize}
2025-03-20 13:49:15 +01:00
\end { frame}
\end { comment}
2025-03-21 11:46:55 +01:00
\begin { frame} [fragile]{ Homogenous Spherical Spaces --- Results}
2025-03-20 14:26:31 +01:00
\begin { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 13:48:42 +01:00
\item For the majority of groups $ \Gamma $ , the anisotropies $ \textcolor { purple } { \frac { \delta T } { T } } $ do not coincide with observations.
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 13:32:21 +01:00
\item The only groups for which they do are $ \Gamma = O ^ * $ and $ \Gamma = I ^ * $ — the \textcolor { red} { binary octahedral} and \textcolor { red} { binary icosahedral} groups of order 48 and 120 respectively.
2025-03-21 13:06:22 +01:00
\pause
2025-03-20 14:26:31 +01:00
\end { itemize}
\begin { figure} [H]
\centering
2025-03-21 12:30:14 +01:00
\includegraphics [width=0.4\linewidth] { binary-octahedron.png}
2025-03-20 14:26:31 +01:00
\caption { Graphical representation of the binary tetrahedral group
[5]}
\end { figure}
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-21 11:46:55 +01:00
\section { CMB Radiation in an Inhomogeneous Spherical Space}
2025-03-20 13:49:15 +01:00
2025-03-20 18:17:19 +01:00
\begin { frame} { Inhomogeneous spherical space}
2025-03-20 13:49:15 +01:00
2025-03-20 14:27:39 +01:00
\begin { itemize}
2025-03-21 15:13:25 +01:00
\pause
2025-03-20 18:17:19 +01:00
\item Manifolds of the form $ \S ^ 3 / \Gamma $ with $ \Gamma $ a group acting on $ \S ^ 3 $ .
2025-03-21 15:26:42 +01:00
\item \textcolor { red} { Multi-connected} space: it has non-contractible loops.
2025-03-21 13:21:43 +01:00
\item \textcolor { red} { Inhomogeneous} space: it does not look identical from every point in space.
2025-03-21 13:11:10 +01:00
\pause
2025-03-21 13:21:43 +01:00
\item Fixing $ | \Gamma | = 8 $ , we have \textcolor { red} { three} multi-connected manifolds, up to equivalence: \pause
2025-03-20 18:22:13 +01:00
\begin { enumerate}
2025-03-21 13:23:14 +01:00
\item homogeneous: $ N 3 $ and $ \lens 8 1 $ .
\item inhomogeneous: $ N 2 \equiv \lens 8 3 $ .
2025-03-20 18:22:13 +01:00
\end { enumerate}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 13:21:43 +01:00
\item Results: inhomogeneous spaces have \textcolor { red} { more variety} in the CMB anisotropies than homogeneous spaces, because the strength of anisotropy suppression is \textcolor { red} { observer dependent} .
2025-03-20 14:27:39 +01:00
\end { itemize}
2025-03-20 13:49:15 +01:00
2025-03-20 16:35:31 +01:00
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-20 16:35:31 +01:00
\section { Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space}
2025-03-21 11:46:55 +01:00
\begin { frame} { Statistical Isotropy and Hypothesis}
2025-03-21 12:55:41 +01:00
\small
\textbf { Theoretical Expectation:} \\
2025-03-21 13:32:21 +01:00
From the perspective of an Earth-based observer, we can view the CMB as a function defined on the celestial sphere $ \mathbb { S } ^ 2 . $ \\
2025-03-21 12:55:41 +01:00
\begin { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\item The CMB temperature fluctuations can be expanded as:
\[
2025-03-21 15:21:38 +01:00
\Delta T(\hat { n} ) = \sum _ { \ell =0} ^ { \infty } \sum _ { m=-\ell } ^ { \ell } \textcolor { blue} { a_ { \ell m} } Y_ { \ell m} (\hat { n} ).
2025-03-21 12:55:41 +01:00
\]
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 15:21:38 +01:00
\item If the universe is \textcolor { red} { isotropic} , the \textbf { mean of the harmonic coefficients} should satisfy
2025-03-21 12:55:41 +01:00
\[
2025-03-21 15:21:38 +01:00
\langle \textcolor { blue} { a_ { \ell m} } \rangle = 0.
2025-03-21 12:55:41 +01:00
\]
\end { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\textbf { Key Question:}
2025-03-21 15:21:38 +01:00
Does the observed CMB data deviate from statistical isotropy?
If \( \langle \textcolor { blue } { a _ { \ell m } } \rangle \neq 0 \) , this suggests a preferred cosmic direction.
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-21 11:46:55 +01:00
\begin { frame} { Methodology: Sky Masking and the Test Statistic}
2025-03-21 12:55:41 +01:00
\small
\textbf { Challenges in Real Observations:}
\begin { itemize}
\item We cannot observe the full CMB sky due to foreground contamination.
2025-03-21 13:06:22 +01:00
2025-03-21 15:20:01 +01:00
\item A \textbf { sky mask function} \( A ( \hat { n } ) \) removes contaminated regions but introduces bias.
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\item The test statistic \( S _ i \) is used, with a matrix $ W $ to correct for these effects:
\[
2025-03-21 15:21:38 +01:00
S_ i = \sum _ { j} W_ { ij} M_ j.
2025-03-21 12:55:41 +01:00
\]
\end { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\textbf { Monte Carlo Simulations:}
\begin { itemize}
\item We generate thousands of \textbf { simulated CMB skies} assuming isotropy.
\item Each sky has different random \( a _ { \ell m } \) , drawn from:
\[
2025-03-21 15:21:38 +01:00
\textcolor { blue} { a_ { \ell m} } \sim \mathcal { N} (0, C_ \ell ).
2025-03-21 12:55:41 +01:00
\]
\item The observed WMAP data is compared against these simulations.
\end { itemize}
2025-03-20 16:35:31 +01:00
\end { frame}
2025-03-21 11:46:55 +01:00
\begin { frame} { Results and Interpretation}
2025-03-21 12:55:41 +01:00
\small
\begin { columns}
\column { 0.5\textwidth }
\begin { figure}
\centering
\includegraphics [width=6.2cm] { DSE-Test Graph}
\caption { The decorrelated band mean test statistic values over multipole ranges [9].}
\end { figure}
\column { 0.5\textwidth }
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\textbf { Key Findings:}
\begin { itemize}
\item A statistically significant deviation was found in \( 221 \leq \ell \leq 240 \) .
\item This suggests a potential \textcolor { red} { preferred cosmic direction} .
\end { itemize}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 12:55:41 +01:00
\textbf { Possible Explanations:}
\begin { itemize}
2025-03-21 15:26:42 +01:00
\item A real cosmological signal? → A \textcolor { red} { finite universe} or new physics.
2025-03-21 15:20:01 +01:00
\item A systematic effect? → Technological or theory-related limitations.
2025-03-21 12:55:41 +01:00
\end { itemize}
\end { columns}
2025-03-20 16:35:31 +01:00
\end { frame}
2025-03-20 14:21:41 +01:00
2025-03-21 11:46:55 +01:00
2025-03-20 16:35:31 +01:00
\section { Conclusion}
2025-03-20 13:49:15 +01:00
\begin { frame} { Conclusion}
2025-03-21 13:06:22 +01:00
\pause
2025-03-21 11:46:55 +01:00
\begin { enumerate}
2025-03-21 13:48:42 +01:00
\item We can infer the \textcolor { blue} { shape} of the universe from its \textcolor { blue} { spectrum} .
2025-03-21 13:05:25 +01:00
2025-03-21 13:11:10 +01:00
\pause
\item There are two homogeneous spherical manifolds obtained as $ \S ^ 3 / \Gamma $ which produce CMB similar to observations.
2025-03-21 13:05:25 +01:00
2025-03-21 13:11:10 +01:00
\pause
\item Inhomogeneous spherical spaces exhibit varied behavior of CMB anisotropies.
2025-03-21 13:05:25 +01:00
2025-03-21 13:11:10 +01:00
\pause
2025-03-21 13:48:42 +01:00
\item Statistical test results suggest possibilities of \textcolor { red} { finite multi-connected} topology.
2025-03-21 11:46:55 +01:00
\end { enumerate}
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-20 16:35:31 +01:00
\section { References}
2025-03-20 13:49:15 +01:00
\begin { frame} { References}
2025-03-20 14:26:31 +01:00
\begin { itemize}
2025-03-21 13:21:43 +01:00
\item [1] R. Aurich, P. Kramer, and S. Lustig. \textit { Cosmic microwave background radiation in an inhomogeneous spherical space} . Physica Scripta, 2011.
\item [2] R. Aurich, P. Kramer, and S. Lustig. \textit { A survey of lens spaces and large-scale CMB anisotropy} . Monthly Notices of the Royal Astronomical Society, 2012.
\item [3] R. Aurich, S. Lustig, and F. Steiner. \textit { CMB anisotropy of spherical spaces} . Classical and Quantum Gravity, 2005.
\item [4] P. Bielewicz, K. M. G´ orski, and A. J. Banday. \textit { Low-order multipole maps of cosmic microwave background anisotropy derived from WMAP} . Oxford University Press, 2004.
\item [5]G. Egan. \textit { Symmetries and the 24-cell} . 2021. Accessed at https://www.gregegan.net/SCIENCE/24-cell/24-cell.html.
2025-03-20 14:26:31 +01:00
\end { itemize}
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-21 13:56:41 +01:00
\begin { frame} { References 2 --- Electric Boogaloo}
2025-03-20 14:26:31 +01:00
\begin { itemize}
2025-03-20 13:51:38 +01:00
2025-03-21 13:21:43 +01:00
\item [6] N. Jarosik et. al. \textit { Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results} . The American Astronomical Society, 2011.
\item [7] M. Herlihy and N. Shavit. \textit { The Topological Structure of Asynchronous Computability} . Journal of the ACM, 1996.
\item [8] A. Ikeda. \textit { On the spectrum of a Riemannian manifold of positive constant curvature} . Osaka Journal of Mathematics, 1980.
\item [9] D. Kashino, K. Ichiki, and T. Takeuchi. \textit { Test for anisotropy in the mean of the CMB temperature fluctuation in spherical harmonic space} . Physics Review, 2012.
\item [10] P. Labrana. \textit { Emergent Universe Scenario and the Low CMB Multipoles} . Physical Review, 2013.
2025-03-20 14:26:31 +01:00
\end { itemize}
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-21 13:56:41 +01:00
\begin { frame} { References 3 --- the References Strike Again}
2025-03-20 14:26:31 +01:00
\begin { itemize}
2025-03-21 13:21:43 +01:00
\item [11] E. A. Lauret and B. Linowitz. \textit { The spectral geometry of hyperbolic and spherical manifolds: analogies and open problems} . New York Journal of Mathematics, 2025.
\item [12] R. Lehoucq, J. Weeks, J. P. Uzan, E. Gausmann, and J.P. Luminet. \textit { Eigenmodes of three-dimensional spherical spaces and their application to cosmology} . Classical and Quantum Gravity, 2002.
\item [13] M. Serri. \textit { Analysis on Manifolds} . AMS Open Math Notes, 2025.
\item [14] B. Tai-Dana, T. Bryson, and J. Terilla. \textit { Topology, a categorical approach} . The MIT Press, 2020.
2025-03-20 14:26:31 +01:00
\end { itemize}
2025-03-20 13:49:15 +01:00
\end { frame}
\begin { frame} { }
2025-03-20 18:26:18 +01:00
\begin { figure} [H]
\centering
\includegraphics [width=.4\paperwidth] { qrcode.png}
\end { figure}
2025-03-20 14:26:31 +01:00
\begin { center}
2025-03-21 13:36:07 +01:00
\huge \sparkles \: Thank You! \sparkles
2025-03-20 14:26:31 +01:00
\end { center}
2025-03-20 13:49:15 +01:00
\end { frame}
2025-03-21 11:46:55 +01:00
2025-03-20 13:49:15 +01:00
\end { document}